Abstract
We have calculated the bulk-phonon dispersion of the layered semiconductor $\ensuremath{\epsilon}\ensuremath{-}\mathrm{GaSe}$ using ab initio methods. In contrast to previous model calculations, our results show good agreement both with the phonon frequencies from neutron-scattering experiments as well as with the phonon-dispersion curves of the GaSe(0001) surface measured with inelastic He-atom scattering. We have also performed the calculation of the elastic constants ${C}_{13}$ and ${C}_{33},$ and the linear combination ${C}_{11}{+C}_{12},$ in good agreement with experimental values. Furthermore, we have evaluated the equilibrium structure and the surface phonon frequencies at the $\overline{K}$ point of the GaSe(0001) surface. We observed no surface relaxations, and only small differences between bulk and surface frequencies, supporting the fact that only weak interactions exist between the layers.
Keywords
Affiliated Institutions
Related Publications
<i>Ab initio</i> Force Constant Approach to Phonon Dispersion Relations of Diamond and Graphite
The phonon dispersion relations of diamond and graphite are calculated using an ab initio force constant method. The force constants are calculated via a self-consistent superce...
First-Principles Determination of the Soft Mode in Cubic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>ZrO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
A direct approach to calculate the phonon dispersion using an ab initio force constant method is introduced. The phonon dispersion and structural instability of cubic ${\mathrm{...
Anisotropic phonon density of states in FePt nanoparticles with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>L</mml:mi><mml:msub><mml:mn>1</mml:mn><mml:mn>0</mml:mn></mml:msub></mml:mrow></mml:math>structure
The phonon states of iron atoms in the easy-axis aligned $L{1}_{0}\text{-FePt}$ nanoparticles were investigated using $^{57}\text{F}\text{e}$ nuclear-resonant inelastic scatteri...
Kohn-Sham potentials and exchange and correlation energy densities from one- and two-electron density matrices for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Li</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">N</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">F</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
A definition of key quantities of the Kohn-Sham form of density-functional theory such as the exchange-correlation potential ${v}_{\mathrm{xc}}$ and the energy density ${\ensure...
Neutron diffraction measurements and first-principles study of thermal motion of atoms in select<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi>M</mml:mi><mml:mrow><mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mi>A</mml:mi><mml:msub><mml:mi>X</mml:mi><mml:mi>n</mml:mi></mml:msub></mml:mrow></mml:math>and binary<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>M</mml:mi><mml:mi>X</mml:mi></mml:mrow></mml:math>transition-metal carbide phases
Herein, we compare the thermal vibrations of atoms in select ternary carbides\nwith the formula Mn+1AXn ("MAX phases," M = Ti, Cr; A = Al, Si, Ge; X = C, N)\nas determined from ...
Publication Info
- Year
- 1998
- Type
- article
- Volume
- 57
- Issue
- 7
- Pages
- 3726-3728
- Citations
- 23
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevb.57.3726