Kohn-Sham potentials and exchange and correlation energy densities from one- and two-electron density matrices for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Li</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">N</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">F</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>

1998 Physical Review A 58 citations

Abstract

A definition of key quantities of the Kohn-Sham form of density-functional theory such as the exchange-correlation potential ${v}_{\mathrm{xc}}$ and the energy density ${\ensuremath{\varepsilon}}_{\mathrm{xc}}$ in terms of wave-function quantities (one- and two-electron density matrices) is given. This allows the construction of ${v}_{\mathrm{xc}}$ and ${\ensuremath{\varepsilon}}_{\mathrm{xc}}$ numerically as functions of r from ab initio wave functions. The behavior of the constructed exchange ${\ensuremath{\varepsilon}}_{x}$ and correlation ${\ensuremath{\varepsilon}}_{c}$ energy densities and the corresponding integrated exchange ${E}_{x}$ and correlation ${E}_{c}$ energies have been compared with those of the local-density approximation (LDA) and generalized gradient approximations (GGA) of Becke, of Perdew and Wang, and of Lee, Yang, and Parr. The comparison shows significant differences between ${\ensuremath{\varepsilon}}_{c}(\mathbf{r})$ and the ${\ensuremath{\varepsilon}}_{c}^{\mathrm{GGA}}(\mathbf{r}),$ in spite of some gratifying similarities in shape for particularly ${\ensuremath{\varepsilon}}_{c}^{\mathrm{PW}}.$ On the other hand, the local behavior of the GGA exchange energy densities is found to be very similar to the constructed ${\ensuremath{\varepsilon}}_{x}(\mathbf{r}),$ yielding integrated energies to about 1% accuracy. Still the remaining differences are a sizable fraction $(\ensuremath{\sim}25%)$ of the correlation energy, showing up in differences between the constructed and model exchange energy densities that are locally even larger than the typical correlation energy density. It is argued that nondynamical correlation, which is incorporated in ${\ensuremath{\varepsilon}}_{c}(\mathbf{r}),$ is lacking from ${\ensuremath{\varepsilon}}_{c}^{\mathrm{GGA}}(\mathbf{r}),$ while it is included in ${\ensuremath{\varepsilon}}_{x}^{\mathrm{LDA}}(\mathbf{r})$ and ${\ensuremath{\varepsilon}}_{x}^{\mathrm{GGA}}(\mathbf{r})$ but not in ${\ensuremath{\varepsilon}}_{x}(\mathbf{r}).$ This is verified almost quantitatively for the integrated energies. It also appears to hold locally in the sense that the difference ${\ensuremath{\varepsilon}}_{x}^{\mathrm{GGA}}(\mathbf{r})\ensuremath{-}{\ensuremath{\varepsilon}}_{x}(\mathbf{r})$ may be taken to represent ${\ensuremath{\varepsilon}}_{c}^{\mathrm{nondyn}}(\mathbf{r})$ and can be added to ${\ensuremath{\varepsilon}}_{c}^{\mathrm{GGA}}(\mathbf{r})$ to bring it much closer to ${\ensuremath{\varepsilon}}_{c}(\mathbf{r}).$

Keywords

PhysicsEnergy (signal processing)Ab initioWave functionMathematical physicsQuantum mechanicsAtomic physics

Affiliated Institutions

Related Publications

Continuous-time random-walk model of electron transport in nanocrystalline<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">TiO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>electrodes

Electronic junctions made from porous, nanocrystalline ${\mathrm{TiO}}_{2}$ films in contact with an electrolyte are important for applications such as dye-sensitized solar cell...

1999 Physical review. B, Condensed matter 622 citations

First-Principles Determination of the Soft Mode in Cubic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>ZrO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>

A direct approach to calculate the phonon dispersion using an ab initio force constant method is introduced. The phonon dispersion and structural instability of cubic ${\mathrm{...

1997 Physical Review Letters 2708 citations

<i>Ab initio</i>lattice dynamics and phase transformations of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="normal">Zr</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>

Zirconia, $\mathrm{Zr}{\mathrm{O}}_{2}$, is one of the most important ceramic materials in modern technology. Its versatility is closely related to phase transformations. Althou...

2005 Physical Review B 119 citations

Publication Info

Year
1998
Type
article
Volume
57
Issue
3
Pages
1729-1742
Citations
58
Access
Closed

External Links

Citation Metrics

58
OpenAlex

Cite This

P. R. T. Schipper, O. V. Gritsenko, Evert Jan Baerends (1998). Kohn-Sham potentials and exchange and correlation energy densities from one- and two-electron density matrices for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Li</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">N</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">F</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>. Physical Review A , 57 (3) , 1729-1742. https://doi.org/10.1103/physreva.57.1729

Identifiers

DOI
10.1103/physreva.57.1729