Domain Structure of Rochelle Salt and K<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">H</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>P<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">O</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>

1953 Physical Review 379 citations

Abstract

It has been verified by means of the polarization microscope that rochelle salt in the ferroelectric state consists of many domains. The domain structure in an annealed crystal is caused by the electrostatic self energy. When the electric field along the $X$ direction is increased and then decreased gradually, successive positions of the domain wall produce a hysteresis loop, which proves the existence of a restoring force on the wall. This restoring force causes lag of charging, and its variation with time produces a fatigue effect. The propagation velocity of a domain wall is about 0.2 cm/sec for 100 v/cm. A group of domains parallel to the $b$ axis has been created artificially. When a stress ${Y}_{z}$ is applied, a set of domains inverts its polarization direction. $Z$-cut specimens of K${\mathrm{H}}_{2}$P${\mathrm{O}}_{4}$ cooled below the Curie temperature divide into many regions which appear to be domains. The phase transition in K${\mathrm{H}}_{2}$P${\mathrm{O}}_{4}$ propagates from only one nucleus.Theoretically it has been concluded that the domain wall energy of rochelle salt is $1.4\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}10}{{P}_{0}}^{3}$ erg/${\mathrm{cm}}^{2}$ and the wall width $\ensuremath{\sim}2\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}/{P}_{0}$ cm, where ${P}_{0}$ is the saturation polarization.

Keywords

PhysicsFerroelectricityDomain (mathematical analysis)Condensed matter physicsPolarization (electrochemistry)Energy (signal processing)Saturation (graph theory)Domain wall (magnetism)Electric fieldCurie temperatureCrystallographyMagnetizationCombinatoricsFerromagnetismMathematical analysisMagnetic fieldQuantum mechanicsMathematicsChemistry

Affiliated Institutions

Related Publications

First-Principles Determination of the Soft Mode in Cubic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>ZrO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>

A direct approach to calculate the phonon dispersion using an ab initio force constant method is introduced. The phonon dispersion and structural instability of cubic ${\mathrm{...

1997 Physical Review Letters 2708 citations

<i>Ab initio</i>lattice dynamics and phase transformations of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="normal">Zr</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>

Zirconia, $\mathrm{Zr}{\mathrm{O}}_{2}$, is one of the most important ceramic materials in modern technology. Its versatility is closely related to phase transformations. Althou...

2005 Physical Review B 119 citations

Continuous-time random-walk model of electron transport in nanocrystalline<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">TiO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>electrodes

Electronic junctions made from porous, nanocrystalline ${\mathrm{TiO}}_{2}$ films in contact with an electrolyte are important for applications such as dye-sensitized solar cell...

1999 Physical review. B, Condensed matter 622 citations

Publication Info

Year
1953
Type
article
Volume
90
Issue
2
Pages
193-202
Citations
379
Access
Closed

External Links

Citation Metrics

379
OpenAlex

Cite This

T. Mitsui, Jiro Furuichi (1953). Domain Structure of Rochelle Salt and K<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">H</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>P<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">O</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>. Physical Review , 90 (2) , 193-202. https://doi.org/10.1103/physrev.90.193

Identifiers

DOI
10.1103/physrev.90.193