Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation

1993 Applied and Computational Harmonic Analysis 423 citations

Keywords

Basis (linear algebra)MathematicsMinimaxThresholdingSimple (philosophy)Gravitational singularityBasis functionWaveletApplied mathematicsHeuristicOrthogonal basisMathematical optimizationAlgorithmComputer scienceMathematical analysisArtificial intelligenceImage (mathematics)Geometry

Affiliated Institutions

Related Publications

Compressed sensing

Suppose x is an unknown vector in Ropfm (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible ...

2004 17126 citations

Compressed sensing

Suppose x is an unknown vector in Ropf <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sup> (a digital image or signal); we pla...

2006 IEEE Transactions on Information Theory 22524 citations

Publication Info

Year
1993
Type
article
Volume
1
Issue
1
Pages
100-115
Citations
423
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

423
OpenAlex

Cite This

David L. Donoho (1993). Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation. Applied and Computational Harmonic Analysis , 1 (1) , 100-115. https://doi.org/10.1006/acha.1993.1008

Identifiers

DOI
10.1006/acha.1993.1008