Abstract
The spline smoothing approach to nonparametric regression and curve estimation is considered. It is shown that, in a certain sense, spline smoothing corresponds approximately to smoothing by a kernel method with bandwidth depending on the local density of design points. Some exact calculations demonstrate that the approximation is extremely close in practice. Consideration of kernel smoothing methods demonstrates that the way in which the effective local bandwidth behaves in spline smoothing has desirable properties. Finally, the main result of the paper is applied to the related topic of penalized maximum likelihood probability density estimates; a heuristic discussion shows that these estimates should adapt well in the tails of the distribution.
Keywords
Related Publications
Linear Smoothers and Additive Models
We study linear smoothers and their use in building nonparametric regression models. In the first part of this paper we examine certain aspects of linear smoothers for scatterpl...
A Comparison of Least Squares and Latent Root Regression Estimators
Miilticollinesrity among the columns of regressor variables is known to cause severe distortion of the least squares estimates of the parameters in a multiple linear regression ...
Density Estimation for Statistics and Data Analysis
Introduction. Survey of Existing Methods. The Kernel Method for Univariate Data. The Kernel Method for Multivariate Data. Three Important Methods. Density Estimation in Action.
Very high resolution interpolated climate surfaces for global land areas
We developed interpolated climate surfaces for global land areas (excluding Antarctica) at a spatial resolution of 30 arc s (often referred to as 1-km spatial resolution). The c...
Simultaneous Regression Shrinkage, Variable Selection, and Supervised Clustering of Predictors with OSCAR
Summary Variable selection can be challenging, particularly in situations with a large number of predictors with possibly high correlations, such as gene expression data. In thi...
Publication Info
- Year
- 1984
- Type
- article
- Volume
- 12
- Issue
- 3
- Citations
- 443
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1214/aos/1176346710