Abstract
Suppose x is an unknown vector in Ropfm (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible by transform coding with a known transform, and we reconstruct via the nonlinear procedure defined here, the number of measurements n can be dramatically smaller than the size m. Thus, certain natural classes of images with m pixels need only n=O(m1/4log5/2(m)) nonadaptive nonpixel samples for faithful recovery, as opposed to the usual m pixel samples. More specifically, suppose x has a sparse representation in some orthonormal basis (e.g., wavelet, Fourier) or tight frame (e.g., curvelet, Gabor)-so the coefficients belong to an lscrp ball for 0<ples1. The N important coefficients in that expansion allow reconstruction with lscr2 error O(N1/2-1p/). It is possible to design n=O(Nlog(m)) nonadaptive measurements allowing reconstruction with accuracy comparable to that attainable with direct knowledge of the N important coefficients. Moreover, a good approximation to those N important coefficients is extracted from the n measurements by solving a linear program-Basis Pursuit in signal processing. The nonadaptive measurements have the character of random linear combinations of basis/frame elements. Our results use the notions of optimal recovery, of n-widths, and information-based complexity. We estimate the Gel'fand n-widths of lscrp balls in high-dimensional Euclidean space in the case 0<ples1, and give a criterion identifying near- optimal subspaces for Gel'fand n-widths. We show that most subspaces are near-optimal, and show that convex optimization (Basis Pursuit) is a near-optimal way to extract information derived from these near-optimal subspaces
Keywords
Affiliated Institutions
Related Publications
Compressed sensing
Suppose x is an unknown vector in Ropf <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sup> (a digital image or signal); we pla...
Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit
This paper demonstrates theoretically and empirically that a greedy algorithm called Orthogonal Matching Pursuit (OMP) can reliably recover a signal with $m$ nonzero entries in ...
Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
Suppose we are given a vector f in a class F ⊂ ℝN, e.g., a class of digital signals or digital images. How many linear measurements do we need to make about f to be able to reco...
Sparsity and incoherence in compressive sampling
We consider the problem of reconstructing a sparse signal x^0\\in{\\bb R}^n from a limited number of linear measurements. Given m randomly selected samples of Ux0, where U is an...
Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
This paper considers the model problem of reconstructing an object from incomplete frequency samples. Consider a discrete-time signal f ∈ C N and a randomly chosen set of freque...
Publication Info
- Year
- 2004
- Type
- book
- Citations
- 17126
- Access
- Closed