Abstract

A variational property of the ground-state energy of an electron gas in an external potential $v(\mathrm{r})$, derived by Hohenberg and Kohn, is extended to nonzero temperatures. It is first shown that in the grand canonical ensemble at a given temperature and chemical potential, no two $v(\mathrm{r})$ lead to the same equilibrium density. This fact enables one to define a functional of the density $F[n(\mathrm{r})]$ independent of $v(\mathrm{r})$, such that the quantity $\ensuremath{\Omega}=\ensuremath{\int}v(\mathrm{r})n(\mathrm{r})d\mathrm{r}+F[n(\mathrm{r})]$ is at a minimum and equal to the grand potential when $n(\mathrm{r})$ is the equilibrium density in the grand ensemble in the presence of $v(\mathrm{r})$.

Keywords

PhysicsGrand canonical ensembleOmegaFermi gasEnergy (signal processing)Ground stateGrand potentialElectronAtomic physicsThermodynamicsQuantum mechanicsMathematicsStatistics

Affiliated Institutions

Related Publications

Publication Info

Year
1965
Type
article
Volume
137
Issue
5A
Pages
A1441-A1443
Citations
2701
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

2701
OpenAlex

Cite This

N. David Mermin (1965). Thermal Properties of the Inhomogeneous Electron Gas. Physical Review , 137 (5A) , A1441-A1443. https://doi.org/10.1103/physrev.137.a1441

Identifiers

DOI
10.1103/physrev.137.a1441