Abstract
A variational property of the ground-state energy of an electron gas in an external potential $v(\mathrm{r})$, derived by Hohenberg and Kohn, is extended to nonzero temperatures. It is first shown that in the grand canonical ensemble at a given temperature and chemical potential, no two $v(\mathrm{r})$ lead to the same equilibrium density. This fact enables one to define a functional of the density $F[n(\mathrm{r})]$ independent of $v(\mathrm{r})$, such that the quantity $\ensuremath{\Omega}=\ensuremath{\int}v(\mathrm{r})n(\mathrm{r})d\mathrm{r}+F[n(\mathrm{r})]$ is at a minimum and equal to the grand potential when $n(\mathrm{r})$ is the equilibrium density in the grand ensemble in the presence of $v(\mathrm{r})$.
Keywords
Affiliated Institutions
Related Publications
Kohn-Sham potentials and exchange and correlation energy densities from one- and two-electron density matrices for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Li</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">N</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">F</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
A definition of key quantities of the Kohn-Sham form of density-functional theory such as the exchange-correlation potential ${v}_{\mathrm{xc}}$ and the energy density ${\ensure...
Generalized Kohn-Sham theory for electronic excitations in realistic systems
Instead of expressing the total energy of an interacting electron system as a functional of the one-particle density as in the Hohenberg-Kohn-Sham theory, we use a conventional ...
A molecular dynamics method for simulations in the canonical ensemble
A molecular dynamics simulation method which can generate configurations belonging to the canonical (T, V, N) ensemble or the constant temperature constant pressure (T, P, N) en...
A local exchange-correlation potential for the spin polarized case. i
The local density theory is developed by Hohenberg, Kohn and Sham is extended to the spin polarized case. A spin dependent one- electron potential pertinent to ground state prop...
Explicit local exchange-correlation potentials
The possibilities of the Hohenberg-Kohn-Sham local density theory are explored in view of recent advances in the theory of the interacting electron gas. The authors discuss and ...
Publication Info
- Year
- 1965
- Type
- article
- Volume
- 137
- Issue
- 5A
- Pages
- A1441-A1443
- Citations
- 2701
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrev.137.a1441