Abstract
Instead of expressing the total energy of an interacting electron system as a functional of the one-particle density as in the Hohenberg-Kohn-Sham theory, we use a conventional approach in determining total energies by forming the expectation value 〈scrH〉 of the N-electron Hamiltonian with the true wave function \ensuremath{\Psi}${(\mathrm{q}}_{1}$,${\mathrm{q}}_{2}$,...,${\mathrm{q}}_{N}$). We introduce a new concept of partitioning \ensuremath{\Psi}${(\mathrm{q}}_{1}$,${\mathrm{q}}_{2}$,...,${\mathrm{q}}_{N}$) into two components such that the one-particle density is connected with the first component only. If one requires 〈scrH〉 to be stationary against variation of \ensuremath{\Psi}${(\mathrm{q}}_{1}$,${\mathrm{q}}_{2}$,...,${\mathrm{q}}_{N}$) , this first component turns out to be one Slater determinant in terms of one-particle states which obey Kohn-Sham--type one-particle equations. Hence, the expression for the one-particle density becomes identical to that of the Kohn-Sham theory. The virtues of the new approach, particularly its capability of describing thermal excitation in solids, optical transitions, etc., are discussed in detail. We also address the so-called gap problem which has recently been an extensively debated subject within the one-particle description of N-electron systems.
Keywords
Affiliated Institutions
Related Publications
Kohn-Sham potentials and exchange and correlation energy densities from one- and two-electron density matrices for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Li</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">N</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">F</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
A definition of key quantities of the Kohn-Sham form of density-functional theory such as the exchange-correlation potential ${v}_{\mathrm{xc}}$ and the energy density ${\ensure...
Continuous-time random-walk model of electron transport in nanocrystalline<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">TiO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>electrodes
Electronic junctions made from porous, nanocrystalline ${\mathrm{TiO}}_{2}$ films in contact with an electrolyte are important for applications such as dye-sensitized solar cell...
Effective One-Electron Potential in the Kohn—Sham Molecular Orbital Theory
Density functional theory has received great interest mostly because of the accurate bonding energies and related properties (geometries, force constants) it provides. However, ...
Explicit local exchange-correlation potentials
The possibilities of the Hohenberg-Kohn-Sham local density theory are explored in view of recent advances in the theory of the interacting electron gas. The authors discuss and ...
Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction
In order to calculate the average value of a physical quantity containing also many-particle interactions in a system of $N$ antisymmetric particles, a set of generalized densit...
Publication Info
- Year
- 1986
- Type
- article
- Volume
- 33
- Issue
- 6
- Pages
- 3976-3989
- Citations
- 97
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevb.33.3976