Abstract
Density functional theory has received great interest mostly because of the accurate bonding energies and related properties (geometries, force constants) it provides. However, the Kohn-Sham molecular orbital method, that is almost exclusively used, is more than a convenient tool to generate the required electron density. The effective one-electron potential in the Kohn-Sham equations is intimately related to the physics of electron correlation. We demonstrate that it is useful to break down the exchange-correlation part of the potential into a part that is directly related to the total energy (the hole potential or screening potential) and a socalled response part that is related to "response" of the exchange-correlation hole to density change. The latter part is poorly represented by the generalized gradient approximation, explaining why this approximation yields accurate total energies but fails for simple orbital related quantities such as the HOMO orbital energy. A simple modelling of the response
Keywords
Affiliated Institutions
Related Publications
Exchange and correlation energy in density functional theory: Comparison of accurate density functional theory quantities with traditional Hartree–Fock based ones and generalized gradient approximations for the molecules Li2, N2, F2
The density functional definition of exchange and correlation differs from the traditional one. In order to calculate the density functional theory (DFT), quantities accurately,...
Exchange-correlation potential with correct asymptotic behavior
In this work we analyze the properties of the exchange-correlation potential in the Kohn-Sham form of density-functional theory, which leads to requirements for approximate pote...
Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism
The aim of this paper is to advocate the usefulness of the spin-density-functional (SDF) formalism. The generalization of the Hohenberg-Kohn-Sham scheme to and SDF formalism is ...
Density-functional thermochemistry. III. The role of exact exchange
Despite the remarkable thermochemical accuracy of Kohn–Sham density-functional theories with gradient corrections for exchange-correlation [see, for example, A. D. Becke, J. Che...
Density-functional thermochemistry. II. The effect of the Perdew–Wang generalized-gradient correlation correction
In an earlier paper [A. D. Becke, J. Chem. Phys. 96, 2155 (1992)], Kohn–Sham density-functional calculations of the total atomization energies of the 55 molecules of the Gaussia...
Publication Info
- Year
- 1996
- Type
- book-chapter
- Pages
- 20-41
- Citations
- 24
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1021/bk-1996-0629.ch002