Abstract
The density functional definition of exchange and correlation differs from the traditional one. In order to calculate the density functional theory (DFT), quantities accurately, molecular Kohn–Sham (KS) solutions have been obtained from ab initio wave functions for the homonuclear diatomic molecules Li2, N2, F2. These afford the construction of the KS determinant Ψs and the calculation of its total electronic energy EKS and the kinetic, nuclear-attraction and Coulomb repulsion components Ts, V, WH as well as the (DFT) exchange energy Ex and correlation energy Ec. Comparison of these DFT quantities has been made on one hand with the corresponding Hartree–Fock (HF) quantities and on the other hand with local density approximation (LDA) and generalized gradient approximation (GGA). Comparison with HF shows that the correlation errors in the components T, V, and WH of the total energy are much larger for HF than KS determinantal wave functions. However, the total energies EKS and EHF appear to be close to each other, as well as the exchange energies Ex and ExHF and correlation energies Ec and EcHF. The KS determinantal wave function and the KS orbitals therefore correspond to much improved kinetic and Coulombic energies, while having only a slightly larger total correlation energy. It is stressed that these properties of the Kohn–Sham orbitals make them very suitable for use in the molecular orbital theories of chemistry. Comparison of the accurate Kohn–Sham exchange and correlation energies with LDA and GGA shows that the GGA exchange energies are consistently too negative, while the GGA correlation energies are not negative enough. It is argued that the GGA exchange functionals represent effectively not only exchange, but also the molecular non-dynamical correlation, while the GGA correlation functionals represent dynamical correlation only.
Keywords
Affiliated Institutions
Related Publications
Kohn-Sham potentials and exchange and correlation energy densities from one- and two-electron density matrices for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Li</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">N</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">F</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
A definition of key quantities of the Kohn-Sham form of density-functional theory such as the exchange-correlation potential ${v}_{\mathrm{xc}}$ and the energy density ${\ensure...
Effective One-Electron Potential in the Kohn—Sham Molecular Orbital Theory
Density functional theory has received great interest mostly because of the accurate bonding energies and related properties (geometries, force constants) it provides. However, ...
What Do the Kohn−Sham Orbitals and Eigenvalues Mean?
Kohn−Sham orbitals and eigenvalues are calculated with gradient-corrected functionals for a set of small molecules (H2O, N2, CrH66-, and PdCl42-), varying basis sets and functio...
Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation
Generalized gradient approximations (GGA’s) seek to improve upon the accuracy of the local-spin-density (LSD) approximation in electronic-structure calculations. Perdew and Wang...
Extension of the LAP functional to include parallel spin correlation
The kinetic energy density-dependent correlation functional LAP1 is extended to include parallel-spin correlation beyond the exchange level. Two exchange–correlation schemes are...
Publication Info
- Year
- 1997
- Type
- article
- Volume
- 107
- Issue
- 13
- Pages
- 5007-5015
- Citations
- 209
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1063/1.474864