Abstract
The multivariate asymptotic distribution of sequential Chi-square test statistics is investigated. It is shown that: (a) when sequential Chi-square statistics are calculated for nested models on the same data, the statistics have an asymptotic intercorrelation which may be expressed in closed form, and which is, in many cases, quite high; and (b) sequential Chi-square difference tests are asymptotically independent. Some Monte Carlo evidence on the applicability of the theory is provided.
Keywords
Affiliated Institutions
Related Publications
Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses
In this paper, we develop a classical approach to model selection. Using the Kullback-Leibler Information Criterion to measure the closeness of a model to the truth, we propose ...
Comparative fit indexes in structural models.
Normed and nonnormed fit indexes are frequently used as adjuncts to chi-square statistics for evaluating the fit of a structural model. A drawback of existing indexes is that th...
Structural equation modeling in practice: A review and recommended two-step approach.
In this article, we provide guidance for substantive researchers on the use of structural equation modeling in practice for theory testing and development. We present a comprehe...
A Comparison of Some Approximate F-tests
When an experiment is run with a factorial layout and some of the factors are random effects, there may not be an exact test for some effect of interest. This paper considers th...
Order Statistics Estimators of the Location of the Cauchy Distribution
Abstract In a recent paper in this Journal, Rothenberg, Fisher and Tilanus [1] discuss a class of estimators of the location parameter of the Cauchy distribution, taking the for...
Publication Info
- Year
- 1985
- Type
- article
- Volume
- 50
- Issue
- 3
- Pages
- 253-263
- Citations
- 491
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1007/bf02294104