Abstract
Normed and nonnormed fit indexes are frequently used as adjuncts to chi-square statistics for evaluating the fit of a structural model. A drawback of existing indexes is that they estimate no known population parameters. A new coefficient is proposed to summarize the relative reduction in the noncentrality parameters of two nested models. Two estimators of the coefficient yield new normed (CFI) and nonnormed (FI) fit indexes. CFI avoids the underestimation of fit often noted in small samples for Bentler and Bonett's (1980) normed fit index (NFI). FI is a linear function of Bentler and Bonett's non-normed fit index (NNFI) that avoids the extreme underestimation and overestimation often found in NNFI. Asymptotically, CFI, FI, NFI, and a new index developed by Bollen are equivalent measures of comparative fit, whereas NNFI measures relative fit by comparing noncentrality per degree of freedom. All of the indexes are generalized to permit use of Wald and Lagrange multiplier statistics. An example illustrates the behavior of these indexes under conditions of correct specification and misspecification. The new fit indexes perform very well at all sample sizes.
Keywords
Affiliated Institutions
Related Publications
Choosing a multivariate model: Noncentrality and goodness of fit.
It is suggested that Akaike's information criterion cannot be used for model selection in real applications and that there are problems attending the definition of parsimonious ...
Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives
This article examines the adequacy of the "rules of thumb" conventional cutoff criteria and several new alternatives for various fit indexes used to evaluate model fit in practi...
Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification.
This study evaluated the sensitivity of maximum likelihood (ML)-, generalized least squares (GLS)-, and asymptotic distribution-free (ADF)-based fit indices to model misspecific...
In Search of Golden Rules: Comment on Hypothesis-Testing Approaches to Setting Cutoff Values for Fit Indexes and Dangers in Overgeneralizing Hu and Bentler's (1999) Findings
Abstract Goodness-of-fit (GOF) indexes provide "rules of thumb"—recommended cutoff values for assessing fit in structural equation modeling. Hu and Bentler (1999) proposed a mor...
Sensitivity of Goodness of Fit Indexes to Lack of Measurement Invariance
Two Monte Carlo studies were conducted to examine the sensitivity of goodness of fit indexes to lack of measurement invariance at 3 commonly tested levels: factor loadings, inte...
Publication Info
- Year
- 1990
- Type
- article
- Volume
- 107
- Issue
- 2
- Pages
- 238-246
- Citations
- 23306
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1037/0033-2909.107.2.238