Abstract
A key component of a mobile robot system is the ability to localize itself accurately and, simultaneously, to build a map of the environment. Most of the existing algorithms are based on laser range finders, sonar sensors or artificial landmarks. In this paper, we describe a vision-based mobile robot localization and mapping algorithm, which uses scale-invariant image features as natural landmarks in unmodified environments. The invariance of these features to image translation, scaling and rotation makes them suitable landmarks for mobile robot localization and map building. With our Triclops stereo vision system, these landmarks are localized and robot ego-motion is estimated by least-squares minimization of the matched landmarks. Feature viewpoint variation and occlusion are taken into account by maintaining a view direction for each landmark. Experiments show that these visual landmarks are robustly matched, robot pose is estimated and a consistent three-dimensional map is built. As image features are not noise-free, we carry out error analysis for the landmark positions and the robot pose. We use Kalman filters to track these landmarks in a dynamic environment, resulting in a database map with landmark positional uncertainty.
Keywords
Affiliated Institutions
Related Publications
VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator
One camera and one low-cost inertial measurement unit (IMU) form a monocular visual-inertial system (VINS), which is the minimum sensor suite (in size, weight, and power) for th...
Parallel Tracking and Mapping for Small AR Workspaces
This paper presents a method of estimating camera pose in an unknown scene. While this has previously been attempted by adapting SLAM algorithms developed for robotic exploratio...
Multi-Image Matching Using Multi-Scale Oriented Patches
This paper describes a novel multi-view matching framework based on a new type of invariant feature. Our features are located at Harris corners in discrete scale-space and orien...
Natural Feature Detection on Mobile Phones with 3D FAST
In this paper, we present a novel feature detection approach designed for mobile devices, showing optimized solutions for both detection and description. It is based on FAST (Fe...
Object class recognition by unsupervised scale-invariant learning
We present a method to learn and recognize object class models from unlabeled and unsegmented cluttered scenes in a scale invariant manner. Objects are modeled as flexible const...
Publication Info
- Year
- 2002
- Type
- article
- Volume
- 21
- Issue
- 8
- Pages
- 735-758
- Citations
- 312
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1177/027836402128964611