Abstract

•We study the problem of finding a Fourier representation <b>R </b>of <i>m</i> terms for a given discrete signal <b>A</b> of length<i> N</i>. The Fast Fourier Transform (FFT) can find the optimal <i>N</i>-term representation in time <i>O</i>(<i>N </i>log <i>N</i>) time, but our goal is to get <i>sublinear</i> time algorithms when <i>m</i> << <i>N</i>. Suppose ||<b>A</b>||<sub>2</sub> &#8804;<i>M</i>||<b>A</b>-<b>R</b><sub>opt</sub>||<sub>2</sub>, where <b>R</b><sub>opt</sub> is the optimal output. The previously best known algorithms output <b>R</b> such that ||<b>A</b>-<b>R</b>||<sup>2</sup><sub>2</sub>&#8804;(1+&#949;))||<b>A</b>-<b>R</b><sub>opt</sub>||<sup>2</sup><sub>2</sub> with probability at least 1-&#948; in time* poly(<i>m</i>,log(1/&#948;),log <i>N</i>,log <i>M</i>,1/&#949;). Although this is sublinear in the input size, the dominating expression is the polynomial factor in <i>m</i> which, for published algorithms, is greater than or equal to the bottleneck at <i>m</i><sup>2</sup> that we identify below. Our experience with these algorithms shows that this is serious limitation in theory and in practice. Our algorithm beats this <i>m</i><sup>2</sup> bottleneck. Our main result is a significantly improved algorithm for this problem and the <i>d</i>-dimensional analog. Our algorithm outputs an <b>R</b> with the same approximation guarantees but it runs in time <i>m</i>•poly(log(1/&#948;),log <i>N</i>,log <i>M</i>,1/&#949;). A version of the algorithm holds for all <i>N</i>, though the details differ slightly according to the factorization of <i>N</i>. For the <i>d</i>-dimensional problem of size <i>N</i><sub>1</sub> × <i>N</i><sub>2</sub> × •• × <i>N</i><sub>d</sub>, the linear-in-<i>m</i> algorithm extends efficiently to higher dimensions for certain factorizations of the <i>N<sub>i</sub></i>'s; we give a quadratic-in-<i>m</i> algorithm that works for any values of <i>N<sub>i</sub></i>'s. This article replaces several earlier, unpublished drafts.

Keywords

CombinatoricsFast Fourier transformBinary logarithmSublinear functionMathematicsAlgorithmDiscrete mathematics

Affiliated Institutions

Related Publications

Compressed sensing

Suppose x is an unknown vector in Ropf <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sup> (a digital image or signal); we pla...

2006 IEEE Transactions on Information Theory 22524 citations

Decoding by Linear Programming

This paper considers a natural error correcting problem with real valued input/output. We wish to recover an input vector f/spl isin/R/sup n/ from corrupted measurements y=Af+e....

2005 IEEE Transactions on Information Theory 7166 citations

Publication Info

Year
2005
Type
article
Volume
5914
Pages
59141A-59141A
Citations
212
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

212
OpenAlex

Cite This

Anna C. Gilbert, S. Muthukrishnan, Michael Strauss (2005). Improved time bounds for near-optimal sparse Fourier representations. Proceedings of SPIE, the International Society for Optical Engineering/Proceedings of SPIE , 5914 , 59141A-59141A. https://doi.org/10.1117/12.615931

Identifiers

DOI
10.1117/12.615931