Abstract
This paper considers a natural error correcting problem with real valued input/output. We wish to recover an input vector f/spl isin/R/sup n/ from corrupted measurements y=Af+e. Here, A is an m by n (coding) matrix and e is an arbitrary and unknown vector of errors. Is it possible to recover f exactly from the data y? We prove that under suitable conditions on the coding matrix A, the input f is the unique solution to the /spl lscr//sub 1/-minimization problem (/spl par/x/spl par//sub /spl lscr/1/:=/spl Sigma//sub i/|x/sub i/|) min(g/spl isin/R/sup n/) /spl par/y - Ag/spl par//sub /spl lscr/1/ provided that the support of the vector of errors is not too large, /spl par/e/spl par//sub /spl lscr/0/:=|{i:e/sub i/ /spl ne/ 0}|/spl les//spl rho//spl middot/m for some /spl rho/>0. In short, f can be recovered exactly by solving a simple convex optimization problem (which one can recast as a linear program). In addition, numerical experiments suggest that this recovery procedure works unreasonably well; f is recovered exactly even in situations where a significant fraction of the output is corrupted. This work is related to the problem of finding sparse solutions to vastly underdetermined systems of linear equations. There are also significant connections with the problem of recovering signals from highly incomplete measurements. In fact, the results introduced in this paper improve on our earlier work. Finally, underlying the success of /spl lscr//sub 1/ is a crucial property we call the uniform uncertainty principle that we shall describe in detail.
Keywords
Affiliated Institutions
Related Publications
Stable signal recovery from incomplete and inaccurate measurements
Abstract Suppose we wish to recover a vector x 0 ∈ ℝ 𝓂 (e.g., a digital signal or image) from incomplete and contaminated observations y = A x 0 + e ; A is an 𝓃 × 𝓂 matrix wi...
Uncertainty principles and ideal atomic decomposition
Suppose a discrete-time signal S(t), 0/spl les/t<N, is a superposition of atoms taken from a combined time-frequency dictionary made of spike sequences 1/sub {t=/spl tau/}/ and ...
Compressed sensing
Suppose x is an unknown vector in Ropf <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sup> (a digital image or signal); we pla...
Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements
This paper proves best known guarantees for exact reconstruction of a sparse signal f from few non-adaptive universal linear measurements. We consider Fourier measurements (rand...
Sparsity and incoherence in compressive sampling
We consider the problem of reconstructing a sparse signal x^0\\in{\\bb R}^n from a limited number of linear measurements. Given m randomly selected samples of Ux0, where U is an...
Publication Info
- Year
- 2005
- Type
- article
- Volume
- 51
- Issue
- 12
- Pages
- 4203-4215
- Citations
- 7166
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/tit.2005.858979