Abstract
Abstract Suppose we wish to recover a vector x 0 ∈ ℝ 𝓂 (e.g., a digital signal or image) from incomplete and contaminated observations y = A x 0 + e ; A is an 𝓃 × 𝓂 matrix with far fewer rows than columns (𝓃 ≪ 𝓂) and e is an error term. Is it possible to recover x 0 accurately based on the data y ? To recover x 0 , we consider the solution x # to the 𝓁 1 ‐regularization problem where ϵ is the size of the error term e . We show that if A obeys a uniform uncertainty principle (with unit‐normed columns) and if the vector x 0 is sufficiently sparse, then the solution is within the noise level As a first example, suppose that A is a Gaussian random matrix; then stable recovery occurs for almost all such A 's provided that the number of nonzeros of x 0 is of about the same order as the number of observations. As a second instance, suppose one observes few Fourier samples of x 0 ; then stable recovery occurs for almost any set of 𝓃 coefficients provided that the number of nonzeros is of the order of 𝓃/(log 𝓂) 6 . In the case where the error term vanishes, the recovery is of course exact, and this work actually provides novel insights into the exact recovery phenomenon discussed in earlier papers. The methodology also explains why one can also very nearly recover approximately sparse signals. © 2006 Wiley Periodicals, Inc.
Keywords
Affiliated Institutions
Related Publications
Decoding by Linear Programming
This paper considers a natural error correcting problem with real valued input/output. We wish to recover an input vector f/spl isin/R/sup n/ from corrupted measurements y=Af+e....
Compressed sensing
Suppose x is an unknown vector in Ropfm (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible ...
Generalized Collinearity Diagnostics
Abstract Working in the context of the linear model y = Xβ + ε, we generalize the concept of variance inflation as a measure of collinearity to a subset of parameters in β (deno...
Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
This paper considers the model problem of reconstructing an object from incomplete frequency samples. Consider a discrete-time signal f ∈ C N and a randomly chosen set of freque...
Compressed sensing
Suppose x is an unknown vector in Ropf <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sup> (a digital image or signal); we pla...
Publication Info
- Year
- 2006
- Type
- article
- Volume
- 59
- Issue
- 8
- Pages
- 1207-1223
- Citations
- 7037
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1002/cpa.20124