Abstract
This paper proves best known guarantees for exact reconstruction of a sparse signal f from few non-adaptive universal linear measurements. We consider Fourier measurements (random sample of frequencies of f) and random Gaussian measurements. The method for reconstruction that has recently gained momentum in the sparse approximation theory is to relax this highly non-convex problem to a convex problem, and then solve it as a linear program. What are best guarantees for the reconstruction problem to be equivalent to its convex relaxation is an open question. Recent work shows that the number of measurements k(r,n) needed to exactly reconstruct any r-sparse signal f of length n from its linear measurements with convex relaxation is usually O(r poly log (n)). However, known guarantees involve huge constants, in spite of very good performance of the algorithms in practice. In attempt to reconcile theory with practice, we prove the first guarantees for universal measurements (i.e. which work for all sparse functions) with reasonable constants. For Gaussian measurements, k(r,n) lsim 11.7 r [1.5 + log(n/r)], which is optimal up to constants. For Fourier measurements, we prove the best known bound k(r, n) = O(r log(n) middot log <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> (r) log(r log n)), which is optimal within the log log n and log <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> r factors. Our arguments are based on the technique of geometric functional analysis and probability in Banach spaces.
Keywords
Affiliated Institutions
Related Publications
Compressed sensing
Suppose x is an unknown vector in Ropf <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sup> (a digital image or signal); we pla...
Compressed sensing and best 𝑘-term approximation
Compressed sensing is a new concept in signal processing where one seeks to minimize the number of measurements to be taken from signals while still retaining the information ne...
Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
Suppose we are given a vector f in a class F ⊂ ℝN, e.g., a class of digital signals or digital images. How many linear measurements do we need to make about f to be able to reco...
Decoding by Linear Programming
This paper considers a natural error correcting problem with real valued input/output. We wish to recover an input vector f/spl isin/R/sup n/ from corrupted measurements y=Af+e....
Improved time bounds for near-optimal sparse Fourier representations
•We study the problem of finding a Fourier representation <b>R </b>of <i>m</i> terms for a given discrete signal <b>A</b> of length<i> N</i>. The Fast Fourier Transform (FFT) ca...
Publication Info
- Year
- 2006
- Type
- article
- Pages
- 207-212
- Citations
- 230
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/ciss.2006.286463