Abstract
The Born-Oppenheimer approximation divides the problem of quantum molecular dynamics into two familiar problems: (1) solution for the electronic wave functions for a given instantaneous arrangement of ions and (2) the motion of the atomic cores under the influence of those wave functions. A combination of conjugate-gradient methods to solve (1) with standard molecular dynamics to solve (2) results in a scheme that is at least two orders of magnitude more accurate than previously possible, thus allowing accurate calculation of dynamic correlation functions while maintaining tolerable energy conservation for microcanonical averages of those correlation functions over picosecond time scales. By employing conjugate-gradient techniques, this method is used to extend the applicability of finite-temperature ab initio techniques to systems with large length scales.
Keywords
Affiliated Institutions
Related Publications
<i>Ab initio</i>molecular dynamics for liquid metals
We present ab initio quantum-mechanical molecular-dynamics calculations based on the calculation of the electronic ground state and of the Hellmann-Feynman forces in the local-d...
Augmented-plane-wave calculations on small molecules
We have performed ab initio calculations on a wide range of small molecules, demonstrating the accuracy and flexibility of an alternative method for calculating the electronic s...
Exchange and correlation energy in density functional theory: Comparison of accurate density functional theory quantities with traditional Hartree–Fock based ones and generalized gradient approximations for the molecules Li2, N2, F2
The density functional definition of exchange and correlation differs from the traditional one. In order to calculate the density functional theory (DFT), quantities accurately,...
Accurate exchange-correlation potentials and total-energy components for the helium isoelectronic series
Starting from very accurate many-body wave functions, we have constructed essentially exact densities, exchange-correlation potentials, and components of the total energy for he...
Kohn-Sham potentials and exchange and correlation energy densities from one- and two-electron density matrices for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Li</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">N</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">F</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
A definition of key quantities of the Kohn-Sham form of density-functional theory such as the exchange-correlation potential ${v}_{\mathrm{xc}}$ and the energy density ${\ensure...
Publication Info
- Year
- 1992
- Type
- article
- Volume
- 45
- Issue
- 4
- Pages
- 1538-1549
- Citations
- 134
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevb.45.1538