High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer

2007 Genome biology 325 citations

Abstract

BackgroundThe characterization of copy number alteration patterns in breast cancer requires high-resolution genome-wide profiling of a large panel of tumor specimens. To date, most genome-wide array comparative genomic hybridization studies have used tumor panels of relatively large tumor size and high Nottingham Prognostic Index (NPI) that are not as representative of breast cancer demographics.ResultsWe performed an oligo-array-based high-resolution analysis of copy number alterations in 171 primary breast tumors of relatively small size and low NPI, which was therefore more representative of breast cancer demographics. Hierarchical clustering over the common regions of alteration identified a novel subtype of high-grade estrogen receptor (ER)-negative breast cancer, characterized by a low genomic instability index. We were able to validate the existence of this genomic subtype in one external breast cancer cohort. Using matched array expression data we also identified the genomic regions showing the strongest coordinate expression changes ('hotspots'). We show that several of these hotspots are located in the phosphatome, kinome and chromatinome, and harbor members of the 122-breast cancer CAN-list. Furthermore, we identify frequently amplified hotspots on 8q22.3 (EDD1, WDSOF1), 8q24.11-13 (THRAP6, DCC1, SQLE, SPG8) and 11q14.1 (NDUFC2, ALG8, USP35) associated with significantly worse prognosis. Amplification of any of these regions identified 37 samples with significantly worse overall survival (hazard ratio (HR) = 2.3 (1.3-1.4) p = 0.003) and time to distant metastasis (HR = 2.6 (1.4-5.1) p = 0.004) independently of NPI.ConclusionWe present strong evidence for the existence of a novel subtype of high-grade ER-negative tumors that is characterized by a low genomic instability index. We also provide a genome-wide list of common copy number alteration regions in breast cancer that show strong coordinate aberrant expression, and further identify novel frequently amplified regions that correlate with poor prognosis. Many of the genes associated with these regions represent likely novel oncogenes or tumor suppressors.

Keywords

BiologyBreast cancerHuman geneticsGene expression profilingGeneticsComparative genomic hybridizationComputational biologyProfiling (computer programming)GenomicsCancer researchGenomeCancerGene expressionGene

MeSH Terms

Breast NeoplasmsChromosomesHumanPair 11ChromosomesHumanPair 8FemaleGene DosageGene Expression ProfilingGene Expression RegulationNeoplasticGenomic InstabilityGenomicsHumansNucleic Acid HybridizationOncogenesReceptorsEstrogen

Affiliated Institutions

Related Publications

Publication Info

Year
2007
Type
article
Volume
8
Issue
10
Pages
R215-R215
Citations
325
Access
Closed

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

325
OpenAlex
22
Influential

Cite This

Suet‐Feung Chin, Andrew E. Teschendorff, John C. Marioni et al. (2007). High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer. Genome biology , 8 (10) , R215-R215. https://doi.org/10.1186/gb-2007-8-10-r215

Identifiers

DOI
10.1186/gb-2007-8-10-r215
PMID
17925008
PMCID
PMC2246289

Data Quality

Data completeness: 90%