Abstract
Many problems in signal processing and statistical inference involve finding sparse solutions to under-determined, or ill-conditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ) error term combined with a sparseness-inducing regularization term. Basis pursuit, the least absolute shrinkage and selection operator (LASSO), wavelet-based deconvolution, and compressed sensing are a few well-known examples of this approach. This paper proposes gradient projection (GP) algorithms for the bound-constrained quadratic programming (BCQP) formulation of these problems. We test variants of this approach that select the line search parameters in different ways, including techniques based on the Barzilai-Borwein method. Computational experiments show that these GP approaches perform well in a wide range of applications, often being significantly faster (in terms of computation time) than competing methods. Although the performance of GP methods tends to degrade as the regularization term is de-emphasized, we show how they can be embedded in a continuation scheme to recover their efficient practical performance.
Keywords
Affiliated Institutions
Related Publications
Atomic Decomposition by Basis Pursuit
The time-frequency and time-scale communities have recently developed a large number of overcomplete waveform dictionaries --- stationary wavelets, wavelet packets, cosine packe...
Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit
This paper demonstrates theoretically and empirically that a greedy algorithm called Orthogonal Matching Pursuit (OMP) can reliably recover a signal with $m$ nonzero entries in ...
Regularization Paths for Generalized Linear Models via Coordinate Descent
We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, two-class logistic regression, and multi- nom...
Compressed sensing
Suppose x is an unknown vector in Ropfm (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible ...
Compressed sensing
Suppose x is an unknown vector in Ropf <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sup> (a digital image or signal); we pla...
Publication Info
- Year
- 2007
- Type
- article
- Volume
- 1
- Issue
- 4
- Pages
- 586-597
- Citations
- 3480
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/jstsp.2007.910281