Abstract
We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, two-class logistic regression, and multi- nomial regression problems while the penalties include ℓ<sub>1</sub> (the lasso), ℓ<sub>2</sub> (ridge regression) and mixtures of the two (the elastic net). The algorithms use cyclical coordinate descent, computed along a regularization path. The methods can handle large problems and can also deal efficiently with sparse features. In comparative timings we find that the new algorithms are considerably faster than competing methods.
Keywords
Related Publications
Regression Shrinkage and Selection Via the Lasso
SUMMARY We propose a new method for estimation in linear models. The ‘lasso’ minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients b...
MCMC Methods for Multi-Response Generalized Linear Mixed Models: The<b>MCMCglmm</b><i>R</i>Package
Generalized linear mixed models provide a flexible framework for modeling a range of data, although with non-Gaussian response variables the likelihood cannot be obtained in clo...
Econometric Analysis of Cross Section and Panel Data
The second edition of this acclaimed graduate text provides a unified treatment of two methods used in contemporary econometric research, cross section and data panel methods. B...
pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination
Abstract Motivation: Generation of structural models and recognition of homologous relationships for unannotated protein sequences are fundamental problems in bioinformatics. Im...
Publication Info
- Year
- 2010
- Type
- article
- Volume
- 33
- Issue
- 1
- Citations
- 15877
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.18637/jss.v033.i01