Abstract
An effective single-band Hamiltonian representing a crystal electron in a uniform magnetic field is constructed from the tight-binding form of a Bloch band by replacing $\ensuremath{\hbar}\stackrel{\ensuremath{\rightarrow}}{\mathrm{k}}$ by the operator $\stackrel{\ensuremath{\rightarrow}}{\mathrm{p}}\ensuremath{-}\frac{e\stackrel{\ensuremath{\rightarrow}}{A}}{c}$. The resultant Schr\"odinger equation becomes a finite-difference equation whose eigenvalues can be computed by a matrix method. The magnetic flux which passes through a lattice cell, divided by a flux quantum, yields a dimensionless parameter whose rationality or irrationality highly influences the nature of the computed spectrum. The graph of the spectrum over a wide range of "rational" fields is plotted. A recursive structure is discovered in the graph, which enables a number of theorems to be proven, bearing particularly on the question of continuity. The recursive structure is not unlike that predicted by Azbel', using a continued fraction for the dimensionless parameter. An iterative algorithm for deriving the clustering pattern of the magnetic subbands is given, which follows from the recursive structure. From this algorithm, the nature of the spectrum at an "irrational" field can be deduced; it is seen to be an uncountable but measure-zero set of points (a Cantor set). Despite these-features, it is shown that the graph is continuous as the magnetic field varies. It is also shown how a spectrum with simplified properties can be derived from the rigorously derived spectrum, by introducing a spread in the field values. This spectrum satisfies all the intuitively desirable properties of a spectrum. The spectrum here presented is shown to agree with that predicted by A. Rauh in a completely different model for crystal electrons in a magnetic field. A new type of magnetic "superlattice" is introduced, constructed so that its unit cell intercepts precisely one quantum of flux. It is shown that this cell represents the periodicity of solutions of the difference equation. It is also shown how this superlattice allows the determination of the wave function at nonlattice sites. Evidence is offered that the wave functions belonging to irrational fields are everywhere defined and are continuous in this model, whereas those belonging to rational fields are only defined on a discrete set of points. A method for investigating these predictions experimentally is sketched.
Keywords
Affiliated Institutions
Related Publications
Electron densities in search of Hamiltonians
By utilizing the knowledge that a Hamiltonian is a unique functional of its ground-state density, the following fundamental connections between densities and Hamiltonians are re...
Surface polaritons on uniaxial antiferromagnets
We investigate the properties of surface polaritons on uniaxial antiferromagnets. In zero applied field we find that surface polaritons may exist in a band of frequencies forbid...
Crystalline Order in Two Dimensions
If $N$ classical particles in two dimensions interacting through a pair potential $\ensuremath{\Phi}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}})$ are in equilibrium in a pa...
Singlet quantum Hall effect and Chern-Simons theories
In this paper, we present a theory of the singlet quantum Hall effect (SQHE). We show that the Halperin-Haldane SQHE wave function can be written in the form of a product of a w...
Time-dependent Kohn-Sham density-functional theory
A time-dependent Kohn-Sham theory is presented for obtaining the time-dependent density which has a periodic dependence on time. A set of coupled single-particle equations $\ens...
Publication Info
- Year
- 1976
- Type
- article
- Volume
- 14
- Issue
- 6
- Pages
- 2239-2249
- Citations
- 3383
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevb.14.2239