Abstract
By utilizing the knowledge that a Hamiltonian is a unique functional of its ground-state density, the following fundamental connections between densities and Hamiltonians are revealed: Given that ${\ensuremath{\rho}}_{\ensuremath{\alpha}}, {\ensuremath{\rho}}_{\ensuremath{\beta}},\dots{},{\ensuremath{\rho}}_{\ensuremath{\omega}}$ are ground-level densities for interacting or noninteracting Hamiltonians ${H}_{1}, {H}_{2},\dots{},{H}_{M}$ ($M$ arbitrarily large) with local potentials ${v}_{1}$,${v}_{2}$,$\dots{}$,${v}_{M}$, but given that we do not know which $\ensuremath{\rho}$ belongs with which $H$, the correct mapping is possible and is obtained by minimizing $\ensuremath{\int}d\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}} [{v}_{1}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}}){\ensuremath{\rho}}_{\ensuremath{\alpha}}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}})+{v}_{2}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}}){\ensuremath{\rho}}_{\ensuremath{\beta}}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}})+\ensuremath{\cdots}{v}_{M}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}}){\ensuremath{\rho}}_{\ensuremath{\omega}}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}})]$ with respect to optimum permutations of the $\ensuremath{\rho}$'s among the $v$'s. A tight rigorous bound connects a density to its interacting ground-state energy via the one-body potential of the interacting system and the Kohn-Sham effective one-body potential of the auxiliary noninteracting system. A modified Kohn-Sham effective potential is defined such that its sum of lowest orbital energies equals the true interacting ground-state energy. Moreover, of all those effective potentials which differ by additive constants and which yield the true interacting ground-state density, this modified effective potential is the most invariant with respect to changes in the one-body potential of the true Hamiltonian. With the exception of the occurrence of certain linear dependencies, $a$ density will not generally be associated with any ground-state wave function (is not wave function $v$ representable) if that density can be generated by a special linear combination of three or more densities that arise from a common set of degenerate ground-state wave functions. Applicability of the "constrained search" approach to density-functional theory is emphasized for non-$v$-representable as well as for $v$-representable densities. In fact, a particular constrained ensemble search is revealed which provides a general sufficient condition for non-$v$ representability by a wave function. The possible appearance of noninteger occupation numbers is discussed in connection with the existence of non-$v$ representability for some Kohn-Sham noninteracting systems.
Keywords
Affiliated Institutions
Related Publications
Density-Functional Theory for Time-Dependent Systems
A density-functional formalism comparable to the Hohenberg-Kohn-Sham theory of the ground state is developed for arbitrary time-dependent systems. It is proven that the single-p...
Time-dependent Kohn-Sham density-functional theory
A time-dependent Kohn-Sham theory is presented for obtaining the time-dependent density which has a periodic dependence on time. A set of coupled single-particle equations $\ens...
Self-consistent band theory of the Fermi-surface, optical, and photoemission properties of copper
A two-parameter self-consistent theory of the electronic structure of copper is presented. The first parameter, the exchange coefficient $\ensuremath{\alpha}$ appearing in Slate...
Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy
The Hohenberg-Kohn theorem is extended to fractional electron number $N$, for an isolated open system described by a statistical mixture. The curve of lowest average energy ${E}...
Thermal Properties of the Inhomogeneous Electron Gas
A variational property of the ground-state energy of an electron gas in an external potential $v(\mathrm{r})$, derived by Hohenberg and Kohn, is extended to nonzero temperatures...
Publication Info
- Year
- 1982
- Type
- article
- Volume
- 26
- Issue
- 3
- Pages
- 1200-1208
- Citations
- 670
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physreva.26.1200