Abstract

A time-dependent Kohn-Sham theory is presented for obtaining the time-dependent density which has a periodic dependence on time. A set of coupled single-particle equations $\ensuremath{-}\frac{1}{2}{\ensuremath{\nabla}}^{2}{\ensuremath{\chi}}_{i}+{v}_{\mathrm{eff}}{\ensuremath{\chi}}_{i}={\ensuremath{\epsilon}}_{i}{\ensuremath{\chi}}_{i}$ and $\frac{\ensuremath{\partial}{\ensuremath{\chi}}_{i}^{2}}{\ensuremath{\partial}t}+\stackrel{\ensuremath{\rightarrow}}{\ensuremath{\nabla}}\ifmmode\cdot\else\textperiodcentered\fi{}({\ensuremath{\chi}}_{i}^{2}\stackrel{\ensuremath{\rightarrow}}{\ensuremath{\nabla}}{S}_{i})=0$ are obtained. The ${\ensuremath{\chi}}_{i}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}},t)$ and ${S}_{i}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}},t)$ are the phase and amplitude, respectively, of the time-dependent Kohn-Sham orbitals, ${v}_{\mathrm{eff}}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}},t)$ is the time-dependent Kohn-Sham effective potential, and ${\ensuremath{\epsilon}}_{i}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}},t)=\ensuremath{-}\frac{\ensuremath{\partial}{S}_{i}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}},t)}{\ensuremath{\partial}t}$. The density $\ensuremath{\rho}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}},t)$ is equal to the sum of the squares of the ${\ensuremath{\chi}}_{i}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}},t)$.

Keywords

Nabla symbolPhysicsKohn–Sham equationsDensity functional theoryCombinatoricsMathematical physicsQuantum mechanicsMathematicsOmega

Affiliated Institutions

Related Publications

Electron densities in search of Hamiltonians

By utilizing the knowledge that a Hamiltonian is a unique functional of its ground-state density, the following fundamental connections between densities and Hamiltonians are re...

1982 Physical review. A, General physics 670 citations

Crystalline Order in Two Dimensions

If $N$ classical particles in two dimensions interacting through a pair potential $\ensuremath{\Phi}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}})$ are in equilibrium in a pa...

1968 Physical Review 1286 citations

Publication Info

Year
1982
Type
article
Volume
26
Issue
4
Pages
2243-2244
Citations
105
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

105
OpenAlex

Cite This

Libero J. Bartolotti (1982). Time-dependent Kohn-Sham density-functional theory. Physical review. A, General physics , 26 (4) , 2243-2244. https://doi.org/10.1103/physreva.26.2243

Identifiers

DOI
10.1103/physreva.26.2243