Abstract

We consider a new model Hamiltonian ${\mathcal{H}}^{(\ensuremath{\nu})}$ for interacting $\ensuremath{\nu}$-dimensional classical "spins"; ${\mathcal{H}}^{(\ensuremath{\nu})}$ reduces to the Ising, planar, and Heisenberg models, respectively, for $\ensuremath{\nu}=1, 2, \mathrm{and} 3$. Certain critical properties of ${\mathcal{H}}^{(\ensuremath{\nu})}$ are found to be monotonic functions of $\ensuremath{\nu}$.

Keywords

SpinsPhysicsCurse of dimensionalityHamiltonian (control theory)Ising modelMonotonic functionHeisenberg modelMathematical physicsCondensed matter physicsQuantum mechanicsFerromagnetismMathematics

Affiliated Institutions

Related Publications

Continuous-time random-walk model of electron transport in nanocrystalline<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">TiO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>electrodes

Electronic junctions made from porous, nanocrystalline ${\mathrm{TiO}}_{2}$ films in contact with an electrolyte are important for applications such as dye-sensitized solar cell...

1999 Physical review. B, Condensed matter 622 citations

Publication Info

Year
1968
Type
article
Volume
20
Issue
12
Pages
589-592
Citations
265
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

265
OpenAlex

Cite This

H. Eugene Stanley (1968). Dependence of Critical Properties on Dimensionality of Spins. Physical Review Letters , 20 (12) , 589-592. https://doi.org/10.1103/physrevlett.20.589

Identifiers

DOI
10.1103/physrevlett.20.589