Abstract
This study compares the two widely used methods of Structural Equation Modeling (SEM): Covariance based Structural Equation Modeling (CB-SEM) and Partial Least Squares based Structural Equation Modeling (PLS-SEM). The first approach is based on covariance, and the second one is based on variance (partial least squares). It further assesses the difference between PLS and Consistent PLS algorithms. To assess the same, empirical data is used. Four hundred sixty-six respondents from India, Saudi Arabia, South Africa, the USA, and few other countries are considered. The structural model is tested with the help of both approaches. Findings indicate that the item loadings are usually higher in PLS-SEM than CB-SEM. The structural relationship is closer to CB-SEM if a consistent PLS algorithm is undertaken in PLS-SEM. It is also found that average variance extracted (AVE) and composite reliability (CR) values are higher in the PLS-SEM method, indicating better construct reliability and validity. CB-SEM is better in providing model fit indices, whereas PLS-SEM fit indices are still evolving. CB-SEM models are better for factor-based models like ours, whereas composite-based models provide excellent outcomes in PLS-SEM. This study contributes to the existing literature significantly by providing an empirical comparison of all the three methods for predictive research domains. The multi-national context makes the study relevant and replicable universally. We call for researchers to revisit the widely used SEM approaches, especially using appropriate SEM methods for factor-based and composite-based models.
Keywords
Affiliated Institutions
Related Publications
PLS-SEM: Indeed a Silver Bullet
Structural equation modeling (SEM) has become a quasi-standard in marketing and management research when it comes to analyzing the cause-effect relations between latent construc...
Discovering Unobserved Heterogeneity in Structural Equation Models to Avert Validity Threats1
A large proportion of information systems research is concerned with developing and testing models pertaining to complex cognition, behaviors, and outcomes of individuals, teams...
Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R
A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) was published (Hair, Hult, Ringle, & Sarstedt
Goodness-of-fit indices for partial least squares path modeling
This paper discusses a recent development in partial least squares (PLS) path modeling, namely goodness-of-fit indices. In order to illustrate the behavior of the goodness-of-fi...
Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification.
This study evaluated the sensitivity of maximum likelihood (ML)-, generalized least squares (GLS)-, and asymptotic distribution-free (ADF)-based fit indices to model misspecific...
Publication Info
- Year
- 2021
- Type
- article
- Volume
- 173
- Pages
- 121092-121092
- Citations
- 1852
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1016/j.techfore.2021.121092