Abstract
125I-labeled human epidermal growth factor (hEGF) binds in a specific and saturable manner to human fibroblasts. At 37 degrees C, the cell-bound 125I-hEGF initially may be recovered in a native form by acid extraction; upon subsequent incubation, the cell-bound 125I-hEGF is degraded very rapidly, with the appearance in the medium of 125I-monoiodotyrosine. At 0 degrees C, cell-bound 125I-hEGF is not degraded but slowly dissociates from the cell. The data are consistent with a mechanism in which 125I-hEGF initially is bound to the cell surface and subsequently is internlized before degradation. The degradation is blocked by inhibitors of metabolic energy production (azide, cyanide, dinitrophenol), some protease inhibitors (Tos-Lys-CH2Cl, benzyl guanidobenzoate), a lysosomotropic agent (chloroquine) various local anesthetics (cocaine, lidocaine, procaine), and ammonium chloride. After the binding and degradation of 125I-hEGF the fibroblasts are no longer able to rebind fresh hormone. The binding capacity of these cells is restored by incubation in a serum-containing medium; this restoration is inhibited by cycloheximide or actinomycin D.
Keywords
Related Publications
Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins.
Human low density lipoprotein (LDL) was incubated with an established line of rabbit aortic endothelial cells. Density gradient fractionation showed a time-, concentration-, and...
Uptake of canine beta-very low density lipoproteins by mouse peritoneal macrophages is mediated by a low density lipoprotein receptor.
The receptor on mouse peritoneal macrophages that mediates the uptake of canine beta-very low density lipoproteins (beta-VLDL) has been identified in this study as an unusual ap...
Ligands internalized through coated or noncoated invaginations follow a common intracellular pathway.
Cholera toxin (CT) represents a class of ligands that binds preferentially to noncoated pits on the cell surface. In the present study, we have investigated the mechanism of end...
Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition
Resident mouse peritoneal macrophages were shown to take up and degrade acetylated 125 I-labeled low density lipoprotein ( 125 I-acetyl-LDL) in vitro at rates that were 20-fold ...
A macrophage receptor that recognizes oxidized low density lipoprotein but not acetylated low density lipoprotein
The formation of cholesterol-loaded macrophage foam cells in arterial tissue may occur by the uptake of modified lipoproteins via the scavenger receptor pathway. The macrophage ...
Publication Info
- Year
- 1976
- Type
- article
- Volume
- 71
- Issue
- 1
- Pages
- 159-171
- Citations
- 1288
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1083/jcb.71.1.159