Abstract
The receptor on mouse peritoneal macrophages that mediates the uptake of canine beta-very low density lipoproteins (beta-VLDL) has been identified in this study as an unusual apolipoprotein (apo-) B,E(LDL) receptor. Ligand blots of Triton X-100 extracts of mouse peritoneal macrophages using 125I-beta-VLDL identified a single protein. This protein cross-reacted with antibodies against bovine apo-B,E(LDL) receptors, but its apparent Mr was approximately 5,000 less than that of the human apo-B,E(LDL) receptor. Binding studies at 4 degrees C demonstrated specific and saturable binding of low density lipoproteins (LDL), beta-VLDL, and cholesterol-induced high density lipoproteins in plasma that contain apo-E as their only protein constituent (apo-E HDLc) to mouse macrophages. Apolipoprotein E-containing lipoproteins (beta-VLDL and apo-E HDLc) bound to mouse macrophages and human fibroblasts with the same high affinity. However, LDL bound to mouse macrophages with an 18-fold lower affinity than to human fibroblasts. Mouse fibroblasts also bound LDL with a similar low affinity. Compared with the apo-B,E(LDL) receptors on human fibroblasts, the apo-B,E(LDL) receptors on mouse macrophages were resistant to down-regulation by incubation of the cells with LDL or beta-VLDL. There are three lines of evidence that an unusual apo-B,E(LDL) receptor on mouse peritoneal macrophages mediates the binding and uptake of beta-VLDL: LDL with residual apo-E removed displaced completely the 125I-beta-VLDL binding to mouse macrophages, preincubation of the mouse macrophages with apo-B,E(LDL) receptor antibody inhibited both the binding of beta-VLDL and LDL to the cells and the formation of beta-VLDL- and LDL-induced cholesteryl esters, and binding of 125I-beta-VLDL to the cells after down-regulation correlated directly with the amount of mouse macrophage apo-B,E(LDL) receptor as determined on immunoblots. This unusual receptor binds LDL poorly, but binds apo-E-containing lipoproteins with normal very high affinity and is resistant to down-regulation by extracellular cholesterol.
Keywords
Affiliated Institutions
Related Publications
Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition
Resident mouse peritoneal macrophages were shown to take up and degrade acetylated 125 I-labeled low density lipoprotein ( 125 I-acetyl-LDL) in vitro at rates that were 20-fold ...
A macrophage receptor that recognizes oxidized low density lipoprotein but not acetylated low density lipoprotein
The formation of cholesterol-loaded macrophage foam cells in arterial tissue may occur by the uptake of modified lipoproteins via the scavenger receptor pathway. The macrophage ...
Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins.
Human low density lipoprotein (LDL) was incubated with an established line of rabbit aortic endothelial cells. Density gradient fractionation showed a time-, concentration-, and...
Lipoprotein profile in men with peripheral vascular disease. Role of intermediate density lipoproteins and apoprotein E phenotypes.
BACKGROUND The role of lipoprotein disturbances in the development of peripheral vascular disease (PVD) has not been sufficiently clarified. METHODS AND RESULTS The relations am...
Enhanced macrophage degradation of biologically modified low density lipoprotein.
Low density lipoprotein (LDL) conditioned by incubation in the presence of rabbit aortic or human umbilical vein endothelial cells (endothelial cell-modified LDL) was degraded b...
Publication Info
- Year
- 1986
- Type
- article
- Volume
- 261
- Issue
- 24
- Pages
- 11194-11201
- Citations
- 122
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1016/s0021-9258(18)67367-3