Abstract
We have developed a new set of algorithms, collectively called “Velvet,” to manipulate de Bruijn graphs for genomic sequence assembly. A de Bruijn graph is a compact representation based on short words ( k -mers) that is ideal for high coverage, very short read (25–50 bp) data sets. Applying Velvet to very short reads and paired-ends information only, one can produce contigs of significant length, up to 50-kb N50 length in simulations of prokaryotic data and 3-kb N50 on simulated mammalian BACs. When applied to real Solexa data sets without read pairs, Velvet generated contigs of ∼8 kb in a prokaryote and 2 kb in a mammalian BAC, in close agreement with our simulated results without read-pair information. Velvet represents a new approach to assembly that can leverage very short reads in combination with read pairs to produce useful assemblies.
Keywords
Affiliated Institutions
Related Publications
IDBA-UD: a <i>de novo</i> assembler for single-cell and metagenomic sequencing data with highly uneven depth
Abstract Motivation: Next-generation sequencing allows us to sequence reads from a microbial environment using single-cell sequencing or metagenomic sequencing technologies. How...
SHARCGS, a fast and highly accurate short-read assembly algorithm for de novo genomic sequencing
The latest revolution in the DNA sequencing field has been brought about by the development of automated sequencers that are capable of generating giga base pair data sets quick...
De novo assembly of human genomes with massively parallel short read sequencing
Next-generation massively parallel DNA sequencing technologies provide ultrahigh throughput at a substantially lower unit data cost; however, the data are very short read length...
Whole-Genome Sequencing and Assembly with High-Throughput, Short-Read Technologies
While recently developed short-read sequencing technologies may dramatically reduce the sequencing cost and eventually achieve the $1000 goal for re-sequencing, their limitation...
Minimap2: pairwise alignment for nucleotide sequences
Abstract Motivation Recent advances in sequencing technologies promise ultra-long reads of ∼100 kb in average, full-length mRNA or cDNA reads in high throughput and genomic cont...
Publication Info
- Year
- 2008
- Type
- article
- Volume
- 18
- Issue
- 5
- Pages
- 821-829
- Citations
- 9539
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1101/gr.074492.107