Abstract
Abstract With the aid of 1 H nuclear magnetic resonance (NMR) spectroscopy, the three‐dimensional structure in aqueous solution was determined for ATX Ia, which is a 46 residue polypeptide neurotoxin of the sea anemone Anemonia sulcata . The input for the structure calculations consisted of 263 distance constraints from nuclear Overhauser effects (NOE) and 76 vicinal coupling constants. For the structure calculation several new or ammended programs were used in a revised strategy consisting of five successive computational steps. First, the program HABAS was used for a complete search of all backbone and χ 1 conformations that are compatible with the intraresidual and sequential NMR constraints. Second, using the program DISMAN, we extended this approach to pentapeptides by extensive sapling of al conformations that are consistent with the local and medium‐range NMR constraints. Both steps resulted in the definition of additional dihedral angle constraints and in stereospecific assignments for a number of β‐methylene groups. In the next two steps DISMAN was used to obtain a group of eight conformers that contain no significant residual violations of the NMR constraints or van der Waals contacts. Finally, these structures were subjected to restrained energy refinement with a modified version of the molecular mechanics module of AMBER, which in addition to the energy force field includes potentials for the NOCE distance constraints and the dihedral angle constraints. The average of the pairwise minimal RMS distances between the resulting refined conformers calculated for the well defined molecular core, which contains the backbone atoms of 35 residues and 20 interior side chains, is 1.5 ± 0.3 Å. This core is formed by a four‐stranded β‐sheet connected by two well‐defined loops, and there is an additional flexible loop consisting of the eleven residues 8‐18. The core of the protein is stabilized by three disulfide bridges, which are surrounded by hydrophobic residues and shielded on one side by hydrophilic residues.
Keywords
Affiliated Institutions
Related Publications
Structure and Dynamics of the Homologous Series of Alanine Peptides: A Joint Molecular Dynamics/NMR Study
The phi,psi backbone angle distribution of small homopolymeric model peptides is investigated by a joint molecular dynamics (MD) simulation and heteronuclear NMR study. Combinin...
The NMR solution structure of the pheromone E<i>r</i>‐2 from the ciliated protozoan <i>Euplotes raikovi</i>
Abstract The NMR structure of the pheromone E r ‐2 from the ciliated protozoan Euplotes raikovi has been determined in aqueous solution. The structure of this 40‐residue protein...
Highly Populated Turn Conformations in Natively Unfolded Tau Protein Identified from Residual Dipolar Couplings and Molecular Simulation
Tau, a natively unstructured protein that regulates the organization of neuronal microtubules, is also found in high concentrations in neurofibrillary tangles of Alzheimer's dis...
Structure and mechanism
Enzyme Modifications for Nuclear Magnetic Resonance Studies: J.T. Gerig, Fluorine Nuclear Magnetic Resonance of Fluorinated Ligands. D.M. LeMaster, Deuteration in Protein-Proton...
Improved side‐chain torsion potentials for the Amber ff99SB protein force field
Abstract Recent advances in hardware and software have enabled increasingly long molecular dynamics (MD) simulations of biomolecules, exposing certain limitations in the accurac...
Publication Info
- Year
- 1989
- Type
- article
- Volume
- 6
- Issue
- 4
- Pages
- 357-371
- Citations
- 77
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1002/prot.340060403