Abstract
The phi,psi backbone angle distribution of small homopolymeric model peptides is investigated by a joint molecular dynamics (MD) simulation and heteronuclear NMR study. Combining the accuracy of the measured scalar coupling constants and the atomistic detail of the all-atom MD simulations with explicit solvent, the thermal populations of the peptide conformational states are determined with an uncertainty of <5 %. Trialanine samples mainly ( approximately 90%) a poly-l-proline II helix-like structure, some ( approximately 10%) beta extended structure, but no alphaR helical conformations. No significant change in the distribution of conformers is observed with increasing chain length (Ala(3) to Ala(7)). Trivaline samples all three major conformations significantly. Triglycine samples the four corner regions of the Ramachandran space and exists in a slow conformational equilibrium between the cis and trans conformation of peptide bonds. The backbone angle distribution was also studied for the segment Ala3 surrounded by either three or eight amino acids on both N- and C-termini from a sequence derived from the protein hen egg white lysozyme. While the conformational distribution of the central three alanine residues in the 9mer is similar to that for the small peptides Ala(3)-Ala(7), major differences are found for the 19mer, which significantly (30-40%) samples alphaR helical stuctures.
Keywords
Affiliated Institutions
Related Publications
Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone ϕ, ψ and Side-Chain χ<sub>1</sub> and χ<sub>2</sub> Dihedral Angles
While the quality of the current CHARMM22/CMAP additive force field for proteins has been demonstrated in a large number of applications, limitations in the model with respect t...
Comparison of multiple Amber force fields and development of improved protein backbone parameters
Abstract The ff94 force field that is commonly associated with the Amber simulation package is one of the most widely used parameter sets for biomolecular simulation. After a de...
ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB
Molecular mechanics is powerful for its speed in atomistic simulations, but an accurate force field is required. The Amber ff99SB force field improved protein secondary structur...
Polarizable Force Field for Peptides and Proteins Based on the Classical Drude Oscillator
Presented is a polarizable force field based on a classical Drude oscillator framework, currently implemented in the programs CHARMM and NAMD, for modeling and molecular dynamic...
Improved side‐chain torsion potentials for the Amber ff99SB protein force field
Abstract Recent advances in hardware and software have enabled increasingly long molecular dynamics (MD) simulations of biomolecules, exposing certain limitations in the accurac...
Publication Info
- Year
- 2007
- Type
- article
- Volume
- 129
- Issue
- 5
- Pages
- 1179-1189
- Citations
- 331
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1021/ja0660406