Abstract
Electronic-structure calculations are reported for ${\mathrm{IrSb}}_{3}$, ${\mathrm{CoSb}}_{3}$, and ${\mathrm{CoAs}}_{3}$ in the skutterudite structure. The band structures show a pseudogap around the Fermi level. The single band, which crosses the pseudogap, touches the conduction-band minimum at the \ensuremath{\Gamma} point in ${\mathrm{CoAs}}_{3}$ and ${\mathrm{IrSb}}_{3}$ and almost touches it in ${\mathrm{CoSb}}_{3}$ due to a different ordering of the conduction bands. The dispersion of this gap-crossing band is quadratic at the \ensuremath{\Gamma} point as expected, but for the antimonides it remarkably crosses over to linear behavior extremely close to the band edge, so that for doping levels as low as 3\ifmmode\times\else\texttimes\fi{}${10}^{16}$ holes/${\mathrm{cm}}^{3}$ the properties are determined by the linear dispersion. This yields interesting transport effects, such as a completely off-diagonal inverse mass tensor and unusual doping dependencies of the hole mobility and Seebeck coefficient. The Seebeck coefficients calculated from the band dispersion are in excellent agreement with experiment.
Keywords
Affiliated Institutions
Related Publications
Eight-band<b>k</b>⋅<b>p</b>model of strained zinc-blende crystals
Second-order L\"owdin perturbation theory is used to calculate the interaction matrices for an eight-band k\ensuremath{\cdot}p model (near the \ensuremath{\Gamma} point) of zinc...
Electronic structure and transport properties in the transparent amorphous oxide semiconductor<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>2</mml:mn><mml:mi/><mml:mi mathvariant="normal">CdO</mml:mi><mml:mi>⋅</mml:mi><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">GeO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
An amorphous $2\mathrm{CdO}\ensuremath{\cdot}{\mathrm{GeO}}_{2}$ thin film with a band gap of 3.4 eV can be converted from an insulator (conductivity $\ensuremath{\sim}{10}^{\en...
Effect of nonparabolicity in GaAs/<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Ga</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mi mathvariant="normal">−</mml:mi><mml:mi mathvariant="normal">x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Al</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>As semiconductor quantum wells
We investigate the effect of nonparabolicity in various bands of bulk semiconductors on the electronic-subband-edge energies in quantum wells. We compare the results from differ...
Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: Chemical trends
We have studied systematically the chemical trends of the band-gap pressure coefficients of all group IV, III-V, and II-VI semiconductors using first-principles band-structure m...
Conduction electrons in GaAs: Five-level<i>k⋅p</i>theory and polaron effects
Properties of conduction electrons in GaAs are described theoretically using a five-level k\ensuremath{\cdot}p model, which consistently accounts for inversion asymmetry of the ...
Publication Info
- Year
- 1994
- Type
- article
- Volume
- 50
- Issue
- 15
- Pages
- 11235-11238
- Citations
- 286
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevb.50.11235