Self-consistent calculations of the energy bands and bonding properties of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">B</mml:mi></mml:mrow><mml:mrow><mml:mn>12</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">C</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>

1990 Physical review. B, Condensed matter 400 citations

Abstract

Using a basis set of \ensuremath{\sim}3580 plane waves, we perform ab initio self-consistent calculations of the energy bands and cohesive energy of ${\mathrm{B}}_{12}$${\mathrm{C}}_{3}$. Calculating stresses and forces, both the lattice constants and the positions of the atoms in the unit cell are determined. If trigonal symmetry is forced (i.e., all three carbons on the chain), the cohesive energy is 108.20 eV/(unit cell). In the experimentally observed structure with one boron on each chain and one carbon on each icosahedron, the cohesive energy is 109.48 eV/(unit cell). An indirect energy gap of 2.781 eV is obtained for this structure and charge-density--contour plots indicate that the ratio of the charge on the carbons to that on the borons is much greater than the 4:3 ratio of their valences.

Keywords

Energy (signal processing)Electronic band structureAb initioCrystallographyMaterials scienceUnit (ring theory)Lattice (music)Atomic physicsPhysicsCharge (physics)Lattice constantBoronBand gapMolecular physicsCondensed matter physicsChemistryDiffractionQuantum mechanicsNuclear physics

Affiliated Institutions

Related Publications

Magnetic dynamics of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">La</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">CuO</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">La</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mi mathvariant="normal">−</mml:mi><mml:mi mathvariant="normal">x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Ba</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">CuO</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>

High-energy inelastic neutron scattering is used to resolve spin waves in ${\mathrm{La}}_{2}$${\mathrm{CuO}}_{4}$. The corresponding long-wavelength velocity is 0.85\ifmmode\pm\...

1989 Physical Review Letters 282 citations

Publication Info

Year
1990
Type
article
Volume
42
Issue
2
Pages
1394-1403
Citations
400
Access
Closed

External Links

Citation Metrics

400
OpenAlex

Cite This

D. M. Bylander, Leonard Kleinman, Seongbok Lee (1990). Self-consistent calculations of the energy bands and bonding properties of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">B</mml:mi></mml:mrow><mml:mrow><mml:mn>12</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">C</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>. Physical review. B, Condensed matter , 42 (2) , 1394-1403. https://doi.org/10.1103/physrevb.42.1394

Identifiers

DOI
10.1103/physrevb.42.1394