Abstract

This user guide describes a Python package, PyMC, that allows users to efficiently code a probabilistic model and draw samples from its posterior distribution using Markov chain Monte Carlo techniques.

Keywords

Python (programming language)Computer scienceBayesian probabilityProgramming languageArtificial intelligence

Affiliated Institutions

Related Publications

Publication Info

Year
2010
Type
article
Volume
35
Issue
4
Pages
1-81
Citations
555
Access
Closed

External Links

Citation Metrics

555
OpenAlex

Cite This

Anand P. Patil, David Huard, Christopher Fonnesbeck (2010). PyMC: Bayesian Stochastic Modelling in Python.. PubMed , 35 (4) , 1-81.