Abstract

Bayesian inference of phylogeny using Markov chain Monte Carlo (MCMC) plays a central role in understanding evolutionary history from molecular sequence data. Visualizing and analyzing the MCMC-generated samples from the posterior distribution is a key step in any non-trivial Bayesian inference. We present the software package Tracer (version 1.7) for visualizing and analyzing the MCMC trace files generated through Bayesian phylogenetic inference. Tracer provides kernel density estimation, multivariate visualization, demographic trajectory reconstruction, conditional posterior distribution summary, and more. Tracer is open-source and available at http://beast.community/tracer.

Keywords

Markov chain Monte CarloPosterior probabilityBayesian probabilityBayesian inferenceComputer scienceInferenceArtificial intelligenceBiology

MeSH Terms

Bayes TheoremEvolutionMolecularMarkov ChainsModelsGeneticMonte Carlo MethodPhylogenySoftware

Affiliated Institutions

Related Publications

Publication Info

Year
2018
Type
article
Volume
67
Issue
5
Pages
901-904
Citations
10180
Access
Closed

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

10180
OpenAlex
2389
Influential
8976
CrossRef

Cite This

Andrew Rambaut, Alexei J. Drummond, Dong Xie et al. (2018). Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology , 67 (5) , 901-904. https://doi.org/10.1093/sysbio/syy032

Identifiers

DOI
10.1093/sysbio/syy032
PMID
29718447
PMCID
PMC6101584

Data Quality

Data completeness: 90%