Abstract
Analysis of variance type models are considered for a regression function or for the logarithm of a probability function, conditional probability function, density function, conditional density function, hazard function, conditional hazard function or spectral density function. Polynomial splines are used to model the main effects, and their tensor products are used to model any interaction components that are included. In the special context of survival analysis, the baseline hazard function is modeled and nonproportionality is allowed. In general, the theory involves the $L_2$ rate of convergence for the fitted model and its components. The methodology involves least squares and maximum likelihood estimation, stepwise addition of basis functions using Rao statistics, stepwise deletion using Wald statistics and model selection using the Bayesian information criterion, cross-validation or an independent test set. Publicly available software, written in C and interfaced to S/S-PLUS, is used to apply this methodology to real data.
Keywords
Affiliated Institutions
Related Publications
Generalized Collinearity Diagnostics
Abstract Working in the context of the linear model y = Xβ + ε, we generalize the concept of variance inflation as a measure of collinearity to a subset of parameters in β (deno...
Choosing a multivariate model: Noncentrality and goodness of fit.
It is suggested that Akaike's information criterion cannot be used for model selection in real applications and that there are problems attending the definition of parsimonious ...
Topics in the Investigation of Linear Relations Fitted by the Method of Least Squares
Summary Various topics are reviewed: the effect of modern computers on statistical calculation; analysis by vector components rather than analysis merely of variance; “stepwise ...
MCMC Methods for Multi-Response Generalized Linear Mixed Models: The<b>MCMCglmm</b><i>R</i>Package
Generalized linear mixed models provide a flexible framework for modeling a range of data, although with non-Gaussian response variables the likelihood cannot be obtained in clo...
Model-Based Clustering, Discriminant Analysis, and Density Estimation
Cluster analysis is the automated search for groups of related observations in a dataset. Most clustering done in practice is based largely on heuristic but intuitively reasonab...
Publication Info
- Year
- 1997
- Type
- article
- Volume
- 25
- Issue
- 4
- Citations
- 399
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1214/aos/1031594728