Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that regulates the cellular defense against toxic and oxidative insults through the expression of genes involved in oxidative stress response and drug detoxification. NRF2 activation renders cells resistant to chemical carcinogens and inflammatory challenges. In addition to antioxidant responses, NRF2 is involved in many other cellular processes, including metabolism and inflammation, and its functions are beyond the originally envisioned. NRF2 activity is tightly regulated through a complex transcriptional and post-translational network that enables it to orchestrate the cell’s response and adaptation to various pathological stressors for the homeostasis maintenance. Elevated or decreased NRF2 activity by pharmacological and genetic manipulations of NRF2 activation is associated with many metabolism- or inflammation-related diseases. Emerging evidence shows that NRF2 lies at the center of a complex regulatory network and establishes NRF2 as a truly pleiotropic transcription factor. Here we summarize the complex regulatory network of NRF2 activity and its roles in metabolic reprogramming, unfolded protein response, proteostasis, autophagy, mitochondrial biogenesis, inflammation, and immunity.
Keywords
MeSH Terms
Affiliated Institutions
Related Publications
Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol—disulfide status
The Escherichia coli transcription factor OxyR is activated by the formation of an intramolecular disulfide bond and subsequently is deactivated by enzymatic reduction of the di...
Hypertension and the Pathogenesis of Atherosclerosis
Abstract Hypertension is a risk factor for the development of atherosclerosis, although the mechanisms have not been well elucidated. As the cellular and molecular mechanisms of...
Cellular stress conditions are reflected in the protein and RNA content of endothelial cell‐derived exosomes
Background The healthy vascular endothelium, which forms the barrier between blood and the surrounding tissues, is known to efficiently respond to stress signals like hypoxia an...
Redox Regulation of Fos and Jun DNA-Binding Activity in Vitro
The proto-oncogenes c- fos and c- jun function cooperatively as inducible transcription factors in signal transduction processes. Their protein products, Fos and Jun, form a het...
Role of Members of the Wnt Gene Family in Human Hematopoiesis
Abstract The hematopoietic system is derived from ventral mesoderm. A number of genes that are important in mesoderm development have been identified including members of the tr...
Publication Info
- Year
- 2020
- Type
- review
- Volume
- 21
- Issue
- 13
- Pages
- 4777-4777
- Citations
- 1485
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.3390/ijms21134777
- PMID
- 32640524
- PMCID
- PMC7369905