Abstract
The Escherichia coli transcription factor OxyR is activated by the formation of an intramolecular disulfide bond and subsequently is deactivated by enzymatic reduction of the disulfide bond. Here we show that OxyR can be activated by two possible pathways. In mutants defective in the cellular disulfide-reducing systems, OxyR is constitutively activated by a change in the thiol—disulfide redox status in the absence of added oxidants. In wild-type cells, OxyR is activated by hydrogen peroxide. By monitoring the presence of the OxyR disulfide bond after exposure to hydrogen peroxide in vivo and in vitro , we also show that the kinetics of OxyR oxidation by low concentrations of hydrogen peroxide is significantly faster than the kinetics of OxyR reduction, allowing for transient activation in an overall reducing environment. We propose that the activity of OxyR in vivo is determined by the balance between hydrogen peroxide levels and the cellular redox environment.
Keywords
Affiliated Institutions
Related Publications
Univalent Reduction of Molecular Oxygen by Spinach Chloroplasts on Illumination
Spinach chloroplasts induced the photoreduction of cytochrome c and photooxidation of epinephrine, both of which depended on oxygen and were inhibited by superoxide dismutase.Th...
Involvement of Caspases in Neutrophil Apoptosis: Regulation by Reactive Oxygen Species
Abstract Human neutrophils have a short half-life and are believed to die by apoptosis or programmed cell death both in vivo and in vitro. We found that caspases are activated i...
The Metabolic Fate of Mitochondrial Hydrogen Peroxide
Mitochondrial H 2 O 2 formation is not in equilibrium with defence mechanisms that counteract an accumulation of H 2 , in rat‐heart cell. A model for the accumulation kinetics i...
A Role of Mitochondrial Glutathione Peroxidase in Modulating Mitochondrial Oxidations in Liver
1 The inhibitory effect of t-butyl hydroperoxide on O2 uptake by perfused rat liver and by isolated hepatocytes was investigated with isolated mitochondria. 2 O2 uptake by mitoc...
Redox Regulation of Fos and Jun DNA-Binding Activity in Vitro
The proto-oncogenes c- fos and c- jun function cooperatively as inducible transcription factors in signal transduction processes. Their protein products, Fos and Jun, form a het...
Publication Info
- Year
- 1999
- Type
- article
- Volume
- 96
- Issue
- 11
- Pages
- 6161-6165
- Citations
- 572
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1073/pnas.96.11.6161