Abstract
Two families of transform domain signal restoration (denoising and deblurring) and enhancement methods well suited to processing non-stationary signals are reviewed and comprehensively compared in their different modifications in terms of their signal restoration capability and computational complexity: sliding window transform domain (SWTD) filters and wavelet (WL) based algorithms. SWTD filters work in sliding window in the domain of an orthogonal transform and, in each position of the window, nonlinearly transform window transform coefficients to generate an estimate of the central pixel of the window. As a transform, DCT has been found to be one of the most efficient in most applications. WL methods act globally and apply element-wise nonlinear transformation similar to those used in SWTD methods to the wavelet transform coefficients to generate an estimate of the output signal. The paper provides results of extensive experimental comparisons of image restoration capabilities of the methods and demonstrates that they can naturally be interpreted in a unified way as different implementations of signal sub-band decomposition with uniform (in SWTD filters) or logarithmic (for WL-methods) arrangement of signal sub-bands and element-wise processing decomposed components. As a bridge, a hybrid wavelet/sliding window processing that combines advantages of both methods is described.
Keywords
Affiliated Institutions
Related Publications
Atomic Decomposition by Basis Pursuit
The time-frequency and time-scale communities have recently developed a large number of overcomplete waveform dictionaries --- stationary wavelets, wavelet packets, cosine packe...
Uncertainty principles and ideal atomic decomposition
Suppose a discrete-time signal S(t), 0/spl les/t<N, is a superposition of atoms taken from a combined time-frequency dictionary made of spike sequences 1/sub {t=/spl tau/}/ and ...
SwinIR: Image Restoration Using Swin Transformer
Image restoration is a long-standing low-level vision problem that aims to restore high-quality images from low-quality images (e.g., downscaled, noisy and compressed images). W...
Compressed sensing
Suppose x is an unknown vector in Ropf <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sup> (a digital image or signal); we pla...
Improved time bounds for near-optimal sparse Fourier representations
•We study the problem of finding a Fourier representation <b>R </b>of <i>m</i> terms for a given discrete signal <b>A</b> of length<i> N</i>. The Fast Fourier Transform (FFT) ca...
Publication Info
- Year
- 2001
- Type
- article
- Volume
- 4304
- Pages
- 155-169
- Citations
- 81
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1117/12.424970