Abstract
Localized surface plasmon resonance (LSPR) spectroscopy of metallic nanoparticles is a powerful technique for chemical and biological sensing experiments. Moreover, the LSPR is responsible for the electromagnetic-field enhancement that leads to surface-enhanced Raman scattering (SERS) and other surface-enhanced spectroscopic processes. This review describes recent fundamental spectroscopic studies that reveal key relationships governing the LSPR spectral location and its sensitivity to the local environment, including nanoparticle shape and size. We also describe studies on the distance dependence of the enhanced electromagnetic field and the relationship between the plasmon resonance and the Raman excitation energy. Lastly, we introduce a new form of LSPR spectroscopy, involving the coupling between nanoparticle plasmon resonances and adsorbate molecular resonances. The results from these fundamental studies guide the design of new sensing experiments, illustrated through applications in which researchers use both LSPR wavelength-shift sensing and SERS to detect molecules of chemical and biological relevance.
Keywords
Affiliated Institutions
Related Publications
Surface-enhanced Raman scattering
On the basis of different types of experiments, the authors develop implicitly the model of surface-enhanced Raman scattering (SERS) of adsorbates on metal surfaces. The long-ra...
Introductory Lecture : Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications
Surface-enhanced Raman spectroscopy (SERS) is currently experiencing a renaissance in its development driven by the remarkable discovery of single molecule SERS (SMSERS) and the...
Surface-enhanced spectroscopy
In 1978 it was discovered, largely through the work of Fleischmann, Van Duyne, Creighton, and their coworkers that molecules adsorbed on specially prepared silver surfaces produ...
Surface‐enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection
Abstract Surface‐enhanced Raman spectroscopy (SERS) is a powerful technique for the sensitive and selective detection of low‐concentration analytes. This paper includes a discus...
Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles
The wavelength corresponding to the extinction maximum, λmax, of the localized surface plasmon resonance (LSPR) of silver nanoparticle arrays fabricated by nanosphere lithograph...
Publication Info
- Year
- 2006
- Type
- review
- Volume
- 58
- Issue
- 1
- Pages
- 267-297
- Citations
- 5915
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1146/annurev.physchem.58.032806.104607