Abstract

In 1978 it was discovered, largely through the work of Fleischmann, Van Duyne, Creighton, and their coworkers that molecules adsorbed on specially prepared silver surfaces produce a Raman spectrum that is at times a millionfold more intense than expected. This effect was dubbed surface-enhanced Raman scattering (SERS). Since then the effect has been demonstrated with many molecules and with a number of metals, including Cu, Ag, Au, Li, Na, K, In, Pt, and Rh. In addition, related phenomena such as surface-enhanced second-harmonic generation, four-wave mixing, absorption, and fluorescence have been observed. Although not all fine points of the enhancement mechanism have been clarified, the majority view is that the largest contributor to the intensity amplification results from the electric field enhancement that occurs in the vicinity of small, interacting metal particles that are illuminated with light resonant or near resonant with the localized surface-plasmon frequency of the metal structure. Small in this context is gauged in relation to the wavelength of light. The special preparations required to produce the effect, which include among other techniques electrochemical oxidation-reduction cycling, deposition of metal on very cold substrates, and the generation of metal-island films and colloids, is now understood to be necessary as a means of producing surfaces with appropriate electromagnetic resonances that may couple to electromagnetic fields either by generating rough films (as in the case of the former two examples) or by placing small metal particles in close proximity to one another (as in the case of the latter two). For molecules chemisorbed on SERS-active surface there exists a "chemical enhancement" in addition to the electromagnetic effect. Although difficult to measure accurately, the magnitude of this effect rarely exceeds a factor of 10 and is best thought to arise from the modification of the Raman polarizability tensor of the adsorbate resulting from the formation of a complex between the adsorbate and the metal. Rather than an enhancement mechanism, the chemical effect is more logically to be regarded as a change in the nature and identity of the adsorbate.

Keywords

PhysicsRaman scatteringMetalChemical physicsRaman spectroscopyContext (archaeology)WavelengthElectromagnetic radiationElectric fieldAbsorption (acoustics)PlasmonMolecular physicsSpectroscopyElectromagnetic fieldOpticsMaterials scienceQuantum mechanics

Affiliated Institutions

Related Publications

Surface-enhanced Raman scattering

On the basis of different types of experiments, the authors develop implicitly the model of surface-enhanced Raman scattering (SERS) of adsorbates on metal surfaces. The long-ra...

1992 Journal of Physics Condensed Matter 1423 citations

Publication Info

Year
1985
Type
article
Volume
57
Issue
3
Pages
783-826
Citations
5330
Access
Closed

External Links

Social Impact

Altmetric

Social media, news, blog, policy document mentions

Citation Metrics

5330
OpenAlex

Cite This

Martin Moskovits (1985). Surface-enhanced spectroscopy. Reviews of Modern Physics , 57 (3) , 783-826. https://doi.org/10.1103/revmodphys.57.783

Identifiers

DOI
10.1103/revmodphys.57.783