Abstract
Bulk MoS2, a prototypical layered transition-metal dichalcogenide, is an\nindirect band gap semiconductor. Reducing its size to a monolayer, MoS2\nundergoes a transition to the direct band semiconductor. We support this\nexperimental observation by first principles calculations and show that quantum\nconfinement in layered d-electron dichalcogenides results in tuning the\nelectronic structure at the nanoscale. We further studied the properties of\nrelated TmS2 nanolayers (Tm = W, Nb, Re) and show that the isotopological WS2\nexhibits similar electronic properties, while NbS2 and ReS2 remain metallic\nindependent on size.\n
Keywords
Affiliated Institutions
Related Publications
Transition pathway of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="normal">C</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>crystals under high pressures
The pressure-induced transitions from molecular to nonmolecular CO2 crystals are systematically investigated by using first-principles lattice dynamics calculations. Geometrical...
Inversion Symmetry Breaking by Oxygen Octahedral Rotations in the Ruddlesden-Popper<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>Na</mml:mi><mml:mi>R</mml:mi><mml:msub><mml:mrow><mml:mi>TiO</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>Family
Rotations of oxygen octahedra are ubiquitous, but they cannot break inversion symmetry in simple perovskites. However, in a layered oxide structure, this is possible, as we demo...
Electronic structures of dynamically stable As<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow/><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>O<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow/><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>, Sb<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow/><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>O<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow/><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>, and Bi<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow/><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>O<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow/><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>crystal polymorphs
The relationships between the atomic arrangements, electronic structures, and energetics of three sesquioxides, As2O3, Sb2O3, and Bi2O3, are systematically investigated by first...
Communication Theory of Secrecy Systems*
THE problems of cryptography and secrecy systems furnish an interesting application of communication theory. <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="htt...
Domain Structure of Rochelle Salt and K<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">H</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>P<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">O</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
It has been verified by means of the polarization microscope that rochelle salt in the ferroelectric state consists of many domains. The domain structure in an annealed crystal ...
Publication Info
- Year
- 2011
- Type
- article
- Volume
- 83
- Issue
- 24
- Citations
- 1681
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevb.83.245213