Abstract

Global food demand is increasing rapidly, as are the environmental impacts of agricultural expansion. Here, we project global demand for crop production in 2050 and evaluate the environmental impacts of alternative ways that this demand might be met. We find that per capita demand for crops, when measured as caloric or protein content of all crops combined, has been a similarly increasing function of per capita real income since 1960. This relationship forecasts a 100–110% increase in global crop demand from 2005 to 2050. Quantitative assessments show that the environmental impacts of meeting this demand depend on how global agriculture expands. If current trends of greater agricultural intensification in richer nations and greater land clearing (extensification) in poorer nations were to continue, ∼1 billion ha of land would be cleared globally by 2050, with CO 2 -C equivalent greenhouse gas emissions reaching ∼3 Gt y −1 and N use ∼250 Mt y −1 by then. In contrast, if 2050 crop demand was met by moderate intensification focused on existing croplands of underyielding nations, adaptation and transfer of high-yielding technologies to these croplands, and global technological improvements, our analyses forecast land clearing of only ∼0.2 billion ha, greenhouse gas emissions of ∼1 Gt y −1 , and global N use of ∼225 Mt y −1 . Efficient management practices could substantially lower nitrogen use. Attainment of high yields on existing croplands of underyielding nations is of great importance if global crop demand is to be met with minimal environmental impacts.

Keywords

AgricultureGreenhouse gasAgricultural economicsPer capitaNatural resource economicsSustainabilityClearingAgricultural landEconomicsFood securityLand useEnvironmental scienceBusinessGeographyEcology

Affiliated Institutions

Related Publications

Publication Info

Year
2011
Type
article
Volume
108
Issue
50
Pages
20260-20264
Citations
7105
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

7105
OpenAlex

Cite This

David Tilman, Christian Balzer, Jason Hill et al. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences , 108 (50) , 20260-20264. https://doi.org/10.1073/pnas.1116437108

Identifiers

DOI
10.1073/pnas.1116437108