Abstract
Photon pairs produced by type-I and type-II parametric down-conversion are passed through a Michelson interferometer. Two quarter-wave plates in one arm of the interferometer allow variation of the polarization state of the photons. We investigate experimentally the geometric phase or Pancharatnam phase acquired by single photons and photon pairs dependent on the solid angle that is subtended by the circuit that represents the varying state of polarization on the Poincar\'e sphere. It is found that the geometric phase acquired by the pair depends on the initial polarization state of the two photons. If both photons are in equal states of linear polarization, we observe a doubling of the geometric phase compared to single photons; in the case of orthogonal states of linear polarization, the geometric phase is completely canceled. Our results show the role of Pancharatnam's phase in nonclassical two-photon interference phenomena and the interplay between the geometric phase and the dynamical phase in these phenomena.
Keywords
Affiliated Institutions
Related Publications
Strong localization of photons in certain disordered dielectric superlattices
A new mechanism for strong Anderson localization of photons in carefully prepared disordered dielectric superlattices with an everywhere real positive dielectric constant is des...
Experimental Realization of Einstein-Podolsky-Rosen-Bohm<i>Gedankenexperiment</i>: A New Violation of Bell's Inequalities
The linear-polarization correlation of pairs of photons emitted in a radiative cascade of calcium has been measured. The new experimental scheme, using two-channel polarizers (i...
Wave propagation and localization in a long-range correlated random potential
We examine the effect of long-range spatially correlated disorder on the Anderson localization transition in $d=2+\ensuremath{\epsilon}$ dimensions. This is described as a phase...
Electronic States in Vitreous Selenium
The quantum efficiency for photoproduction of electrons and holes in vitreous selenium has been measured at room temperature for photon energies between 2.0 and 3.1 eV. Electron...
Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions
The photosensitivity of semiconducting polymers can be enhanced by blending donor and acceptor polymers to optimize photoinduced charge separation. We describe a novel phase-sep...
Publication Info
- Year
- 1995
- Type
- article
- Volume
- 52
- Issue
- 4
- Pages
- 2551-2556
- Citations
- 42
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physreva.52.2551