Abstract
The photosensitivity of semiconducting polymers can be enhanced by blending donor and acceptor polymers to optimize photoinduced charge separation. We describe a novel phase-separated polymer blend (composite) made with poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene], MEH-PPV, as donor and cyano-PPV, CN-PPV, as acceptor. The photoluminescence and electroluminescence of both component polymers are quenched in the blend, indicative of rapid and efficient separation of photogenerated electron-hole pairs with electrons on the acceptor and holes on the donor. Diodes made with such a composite semiconducting polymer as the photosensitive medium show promising photovoltaic characteristics with carrier collection efficiency of 5% electrons/photon and energy conversion efficiency of 0.9%, ∼20 times larger than in diodes made with pure MEH-PPV and ∼100 times larger than in diodes made with CN-PPV. The photosensitivity and the quantum yield increase with reverse bias voltage, to 0.3 A/W and 80% electrons/photon respectively at −10 V, comparable to results obtained from photodiodes made with inorganic semiconductors.
Keywords
Affiliated Institutions
Related Publications
Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions
The carrier collection efficiency (η c ) and energy conversion efficiency (η e ) of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C 60 ...
Dual-function semiconducting polymer devices: Light-emitting and photodetecting diodes
Thin film devices made with poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene], MEH-PPV, are known to be efficient light-emitting diodes. The same devices, under rever...
Carrier tunneling and device characteristics in polymer light-emitting diodes
In this paper it is demonstrated that the characteristics of light-emitting diodes based upon MEH-PPV [more fully known as poly(2-methoxy,5-(2′-ethyl-hexoxy)-1,4-phenylene- viny...
Carrier tunneling and device characteristics in polymer light-emitting diodes
This paper demonstrates that the characteristics of light- emitting diodes (LEDs) based upon MEH-PPV, (more fully known as poly(2-methoxy,5-(2'-ethyl-heroxy)-1,4-phenylene-vinyl...
Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells
The characterization of rectifying heterojunctions (diodes) fabricated from a semiconducting polymer, a soluble derivative of poly(phenylene-vinylene), and buckminsterfullerene,...
Publication Info
- Year
- 1995
- Type
- article
- Volume
- 78
- Issue
- 7
- Pages
- 4510-4515
- Citations
- 990
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1063/1.359792