Abstract
This article proposes a practical modeling approach that can accommodate a rich variety of predictors, united in a generalized linear model (GLM) setting. In addition to the usual ANOVA-type or covariatelinear (L) predictors, we consider modeling any combination of smooth additive (G) components, varying coefficient (V) components, and (discrete representations of) signal (S) components. We assume that G is, and the coefficients of V and S are, inherently smooth—projecting each of these onto B-spline bases using a modest number of equally spaced knots. Enough knots are used to ensure more flexibility than needed; further smoothness is achieved through a difference penalty on adjacent B-spline coefficients (P-splines). This linear re-expression allows all of the parameters associated with these components to be estimated simultaneously in one large GLM through penalized likelihood. Thus, we have the advantage of avoiding both the backfitting algorithm and complex knot selection schemes. We regulate the flexibility of each component through a separate penalty parameter that is optimally chosen based on cross-validation or an information criterion.
Keywords
Affiliated Institutions
Related Publications
Flexible smoothing with B-splines and penalties
B-splines are attractive for nonparametric modelling, but choosing the optimal number and positions of knots is a complex task. Equidistant knots can be used, but their small an...
Regression Splines in the Cox Model with Application to Covariate Effects in Liver Disease
Abstract The Cox proportional hazards model restricts the log hazard ratio to be linear in the covariates. A smooth nonlinear covariate effect may go undetected in this model bu...
Linear Smoothers and Additive Models
We study linear smoothers and their use in building nonparametric regression models. In the first part of this paper we examine certain aspects of linear smoothers for scatterpl...
Ideal spatial adaptation by wavelet shrinkage
SUMMARY With ideal spatial adaptation, an oracle furnishes information about how best to adapt a spatially variable estimator, whether piecewise constant, piecewise polynomial, ...
Varying-Coefficient Models
SUMMARY We explore a class of regression and generalized regression models in which the coefficients are allowed to vary as smooth functions of other variables. General algorith...
Publication Info
- Year
- 2002
- Type
- article
- Volume
- 11
- Issue
- 4
- Pages
- 758-783
- Citations
- 72
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1198/106186002844