Abstract
SUMMARY With ideal spatial adaptation, an oracle furnishes information about how best to adapt a spatially variable estimator, whether piecewise constant, piecewise polynomial, variable knot spline, or variable bandwidth kernel, to the unknown function. Estimation with the aid of an oracle offers dramatic advantages over traditional linear estimation by nonadaptive kernels; however, it is a priori unclear whether such performance can be obtained by a procedure relying on the data alone. We describe a new principle for spatially-adaptive estimation: selective wavelet reconstruction. We show that variable-knot spline fits and piecewise-polynomial fits, when equipped with an oracle to select the knots, are not dramatically more powerful than selective wavelet reconstruction with an oracle. We develop a practical spatially adaptive method, RiskShrink, which works by shrinkage of empirical wavelet coefficients. RiskShrink mimics the performance of an oracle for selective wavelet reconstruction as well as it is possible to do so. A new inequality in multivariate normal decision theory which we call the oracle inequality shows that attained performance differs from ideal performance by at most a factor of approximately 2 log n, where n is the sample size. Moreover no estimator can give a better guarantee than this. Within the class of spatially adaptive procedures, RiskShrink is essentially optimal. Relying only on the data, it comes within a factor log 2 n of the performance of piecewise polynomial and variableknot spline methods equipped with an oracle. In contrast, it is unknown how or if piecewise polynomial methods could be made to function this well when denied access to an oracle and forced to rely on data alone.
Keywords
Affiliated Institutions
Related Publications
Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements
This paper proves best known guarantees for exact reconstruction of a sparse signal f from few non-adaptive universal linear measurements. We consider Fourier measurements (rand...
Collinearity: a review of methods to deal with it and a simulation study evaluating their performance
Collinearity refers to the non independence of predictor variables, usually in a regression‐type analysis. It is a common feature of any descriptive ecological data set and can ...
Development and Validation of the HScore, a Score for the Diagnosis of Reactive Hemophagocytic Syndrome
Objective Because it has no unique clinical, biologic, or histologic features, reactive hemophagocytic syndrome may be difficult to distinguish from other diseases such as sever...
Publication Info
- Year
- 1994
- Type
- article
- Volume
- 81
- Issue
- 3
- Pages
- 425-455
- Citations
- 7664
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1093/biomet/81.3.425