Abstract
A general contraction scheme for Gaussian basis sets is presented. The contraction coefficients are defined by the natural orbitals obtained from an atomic configuration-interaction calculation. Such atomic natural orbitals provide an excellent basis for molecular electronic structure calculations. Large primitive sets can be contracted to only a few functions without significant loss in either the SCF or correlation energy. Polarization functions can be included using the same approach.
Keywords
Affiliated Institutions
Related Publications
Self-Consistent Molecular Orbital Methods. VI. Energy Optimized Gaussian Atomic Orbitals
Minimal basis atomic orbitals expressed as sums of N Gaussian functions are presented for hydrogen and for the first row atoms boron to fluorine. The expansion coefficients and ...
A systematic preparation of new contracted Gaussian‐type orbital sets. VI. <i>Ab initio</i> calculation on molecules containing Na through Cl
Abstract Compact contracted Gaussian basis sets introduced in the preceding article are tested for ab initio molecular calculations on molecules containing third‐row atoms (Na t...
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
In the past, basis sets for use in correlated molecular calculations have largely been taken from single configuration calculations. Recently, Almlöf, Taylor, and co-workers hav...
Ethylene Molecule in a Gaussian Basis. II. Contracted Bases
A self-consistent-field calculation on ground-state ethylene was performed using a large (sp) Gaussian basis. An upper bound to the Hartree—Fock energy and a lower bound to the ...
Self-Consistent Molecular Orbital Methods. IV. Use of Gaussian Expansions of Slater-Type Orbitals. Extension to Second-Row Molecules
Least-squares representations of the 3s and 3p Slater-type atomic orbitals by a small number of Gaussian functions are presented. The use of these Gaussian representations in se...
Publication Info
- Year
- 1987
- Type
- article
- Volume
- 86
- Issue
- 7
- Pages
- 4070-4077
- Citations
- 1096
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1063/1.451917