Abstract
Minimal basis atomic orbitals expressed as sums of N Gaussian functions are presented for hydrogen and for the first row atoms boron to fluorine. The expansion coefficients and Gaussian exponents are determined by minimizing the total calculated energy of the atomic ground state. For expansion lengths of up to six Gaussians, two sets of atomic orbitals are reported. In the first set, which we describe as unconstrained, different Gaussian exponents are used for the 2s and 2p atomic orbitals. In the second set, the 2s and 2p atomic orbitals are constrained to share the same Gaussian exponents. It is shown that this constraint, which produces a significant gain in computational speed in molecular calculations, does not seriously reduce the quality of the atomic orbitals for given N. A comparison of the contracted sets presented here with previous studies on uncontracted basis sets for the first row atoms, shows that the uncontracted Gaussian exponents are a poor approximation to those of the contracted functions.
Keywords
Affiliated Institutions
Related Publications
Self-Consistent Molecular-Orbital Methods. I. Use of Gaussian Expansions of Slater-Type Atomic Orbitals
Least-squares representations of Slater-type atomic orbitals as a sum of Gaussian-type orbitals are presented. These have the special feature that common Gaussian exponents are ...
Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules
An extended basis set of atomic functions expressed as fixed linear combinations of Gaussian functions is presented for hydrogen and the first-row atoms carbon to fluorine. In t...
Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules
Two extended basis sets (termed 5–31G and 6–31G) consisting of atomic orbitals expressed as fixed linear combinations of Gaussian functions are presented for the first row atoms...
Self-Consistent Molecular Orbital Methods. IV. Use of Gaussian Expansions of Slater-Type Orbitals. Extension to Second-Row Molecules
Least-squares representations of the 3s and 3p Slater-type atomic orbitals by a small number of Gaussian functions are presented. The use of these Gaussian representations in se...
Ethylene Molecule in a Gaussian Basis. II. Contracted Bases
A self-consistent-field calculation on ground-state ethylene was performed using a large (sp) Gaussian basis. An upper bound to the Hartree—Fock energy and a lower bound to the ...
Publication Info
- Year
- 1970
- Type
- article
- Volume
- 52
- Issue
- 10
- Pages
- 5001-5007
- Citations
- 123
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1063/1.1672736