Abstract
The time evolution of the baryon asymmetry ($\frac{k{n}_{B}}{s}$) due to the interactions of a superheavy gauge boson (mass ${M}_{X}\ensuremath{\sim}{10}^{15}$ GeV, coupling strength $\ensuremath{\alpha}\ensuremath{\sim}\frac{1}{45}$) is obtained by numerically integrating the Boltzmann equations. Particle interactions in the very early universe ($t\ensuremath{\lesssim}{10}^{\ensuremath{-}35}$ sec) are assumed to be described by the SU(5) grand unification theory. To a good approximation the results depend upon one parameter, $K\ensuremath{\equiv}2.9\ifmmode\times\else\texttimes\fi{}{10}^{17} \ensuremath{\alpha} \frac{\mathrm{GeV}}{{M}_{X}}$. If $C$ and $\mathrm{CP}$ are not violated in the decays of the superheavy boson no asymmetry develops, and any initial baryon asymmetry is reduced by a factor of $\ensuremath{\cong}\mathrm{exp}(\ensuremath{-}5.5K)$. If both $C$ and $\mathrm{CP}$ are violated then an initially symmetrical universe evolves a baryon asymmetry which today corresponds to $\frac{k{n}_{B}}{s}\ensuremath{\cong}7.8\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}3}\frac{\ensuremath{\epsilon}}{[1+{(16K)}^{1.3}]}$, where $\frac{\ensuremath{\epsilon}}{2}$ is the baryon excess produced when an $X\ensuremath{-}\overline{X}$ pair decays. Decays and inverse decays of superheavy bosons are primarily responsible for these results (as Weinberg and Wilczek suggested); however for $K\ensuremath{\gg}1$ baryon production falls off much less rapidly than they had expected. A gauge boson of mass 3\ifmmode\times\else\texttimes\fi{}${10}^{14}$ GeV could have generated the observed asymmetry $\frac{k{n}_{B}}{s}\ensuremath{\cong}{10}^{\ensuremath{-}9.8\ifmmode\pm\else\textpm\fi{}1.6}$ if $\ensuremath{\epsilon}\ensuremath{\cong}{10}^{\ensuremath{-}4.3\ifmmode\pm\else\textpm\fi{}1.6}$. In a companion paper the role of Higgs bosons is considered.
Keywords
Affiliated Institutions
Related Publications
Precision Measurement of Half-Lives and Specific Activities of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">U</mml:mi></mml:mrow><mml:mprescripts/><mml:mrow/><mml:mrow><mml:mn>235</mml:mn></mml:mrow><mml:mrow/><mml:mrow/></mml:mmultiscripts></mml:mrow></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">U</mml:mi></mml:mrow><mml:mprescripts/><mml:mrow/><mml:mrow><mml:mn>238</mml:mn></mml:mrow><mml:mrow/><mml:mrow/></mml:mmultiscripts></mml:mrow></mml:math>
New determinations of the half-lives of $^{235}\mathrm{U}$ and $^{238}\mathrm{U}$ have been made. Improved techniques have allowed the half-life values to be measured with great...
Lattice Vibrations in Pyrolitic Graphite
The dispersion relation for the longitudinal acoustic lattice waves propagating in the direction of the hexad axis in (pyrolitic) graphite, at room temperature, has been determi...
Domain Structure of Rochelle Salt and K<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">H</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>P<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">O</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
It has been verified by means of the polarization microscope that rochelle salt in the ferroelectric state consists of many domains. The domain structure in an annealed crystal ...
First-Principles Determination of the Soft Mode in Cubic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>ZrO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
A direct approach to calculate the phonon dispersion using an ab initio force constant method is introduced. The phonon dispersion and structural instability of cubic ${\mathrm{...
Energy of Lattice Distortion in Cold Worked Permalloy
The lattice distortion produced by severe cold working of permalloy of 70 percent Ni content has been studied by measuring the broadenin of the reflection of the Fe $K\ensuremat...
Publication Info
- Year
- 1980
- Type
- article
- Volume
- 22
- Issue
- 12
- Pages
- 2953-2976
- Citations
- 72
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevd.22.2953